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Abstract Anticipating synchronization is investigated
in nonidentical chaotic systems unidirectionally cou-
pled in a master-slave configuration without a time-
delay feedback. We show that if the parameters of
chaotic master and slave systems are mismatched in
such a way that the mean frequency of a free slave
system is greater than the mean frequency of a master
system, then the phase synchronization regime can be
achieved with the advanced phase of the slave system.
In chaotic neural systems, this leads to the anticipating
spike synchronization: unidirectionally coupled neu-
rons synchronize in such a way that the slave neuron
anticipates the chaotic spikes of the master neuron. We
demonstrate our findings with coupled Rössler sys-
tems as well as with two different models of coupled
neurons, namely, the Hindmarsh–Rose neurons and
the adaptive exponential integrate-and-fire neurons.

Keywords Anticipating chaotic synchronization ·
Rössler system · Hindmarsh–Rose neuron · Adaptive
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1 Introduction

Synchronization of chaotic systems is a fascinating
subject that has been extensively studied since the pio-
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neering works of Fujisaka and Yamada [1] and of Pec-
ora and Carroll [2]. The synchronization phenomenon
has attracted the attention of many researchers due
to its potential applications in a variety of fields [3].
Many different synchronization regimes have been de-
tected in coupled chaotic systems. The simplest form
of synchronization in chaotic systems is identical (or
compleat) synchronization [1, 2, 4], when two cou-
pled identical systems demonstrate identical behav-
ior. A more complex form of chaos synchronization
is generalized synchronization [5, 6]. Here, a func-
tional relationship between the state variables of cou-
pled systems is established as they evolve in time. An-
other form of chaos synchronization, known as phase
synchronization (PS), has been discovered in weakly
coupled chaotic oscillators with different natural fre-
quencies [7]. The PS manifests itself as the coinci-
dence of the mean frequencies of the oscillators with
the amplitudes remaining uncorrelated. Recently, the
research on robust synchronization of chaotic systems
with external disturbances and mismatched parameters
(which always exist in real systems) has gained much
attention [8–11].

The most intriguing form of chaotic synchroniza-
tion is anticipating synchronization (AS), which has
been discovered by Voss [12]. He showed that two
identical chaotic systems coupled unidirectionally in a
master-slave configuration can synchronize their mo-
tion in such a way that the trajectory of a slave system
is advanced in time with respect to the trajectory of
a master system. The AS was observed in two differ-
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ent schemes, with and without memory element in a
master system. The latter scheme is more important
for various applications, but it requires the presence
of a time-delay self-feedback in a slave system. The
scheme with a time-delay term in a slave system has
received a great attention in the last decade. Different
modifications have been proposed to increase the an-
ticipation time of the scheme [13–15]. This scheme
has been successfully implemented in a variety of
models, e.g., in chaotic semiconductor lasers [16],
in coupled inertial ratchets [17], in excitable systems
driven by noise [18, 19], etc. Recently, the AS has
been used as a mechanism to control dynamical sys-
tems [20–22] and to estimate the parameters of chaotic
systems [23]. The existence of the anticipating chaotic
synchronization has been justified experimentally in
electronic circuits [18, 24–29] and lasers [30].

Though the AS is a very interesting phenomenon,
it seems that it can appear only in man-made systems,
since the classical scheme proposed by Voss has two
artificial requirements: (i) the master and slave sys-
tems have to be identical and (ii) a time-delay self-
feedback has to be introduced into the slave system.
A reasonable question arises whether the AS can ap-
pear in natural (not man-made) systems, say in neural
systems? Formally, the second requirement has been
overcame in the modified scheme proposed in [25].
This scheme does not contain the time-delay self-
feedback in the slave system, but still it remains rather
artificial, since the coupling law in this scheme has
a specific form; it is derived from the classical Voss
scheme as a first-order approximation to true time-
delay coupling. Recently, another way to overcome the
second requirement has been proposed in [31]. Here,
a biologically plausible neural model has been con-
sidered, in which the time-delay self-feedback in the
slave neuron was provided by coupling it with an in-
terneuron via a chemical synapse. However, the AS in
this model was considered only for a periodically spik-
ing regime.

In this paper, we show that the AS may appear
in unidirectionally coupled nonidentical chaotic sys-
tems with rather arbitrarily mismatched parameters
and without the time-delay self-feedback in the slave
system. The main requirement is that the mean fre-
quency of the free slave system has to be greater than
the mean frequency of the master system. Since our
research is focused on nonidentical systems, we can-
not achieve an exact AS, i.e., the exact coincidence of

the time-shifted signals of the master and slave sys-
tems as it is observed in the classical Voss scheme.
Fortunately, the lack of an exact anticipation seems to
be not crucial for neuroscience, since it is usually as-
sumed that the information in neural systems is carried
only in the spike arrival times and is independent of the
specific shape of the action potential [32].

The rest of the paper is organized as follows. In
Sect. 2, we investigate the PS in unidirectionally cou-
pled chaotic systems with mismatched parameters and
formulate a simple necessary condition to achieve syn-
chronization regime with the advanced phase of the
slave system. Investigations are performed with the
Rössler [33] systems and the Hindmarsh–Rose [34]
neurons. Section 3 is devoted to the anticipating spike
synchronization (ASS) phenomenon in which a slave
neuron anticipates the chaotic spikes of a master neu-
ron. We demonstrate the ASS with the Hindmarsh–
Rose neurons as well as with the adaptive integrate and
fire neurons [35], and perform a statistical analysis of
the ASS based spike prediction of the master neuron.
The conclusions are presented in Sect. 4.

2 Chaotic PS with the advanced phase of a slave
system

It is well known that the phase of a periodic self-
sustained oscillator entrained by an external periodic
force can be ahead of the phase of the external force
if the frequency of the free oscillator is greater than
the frequency of the external force [3]. The question
about a phase relation becomes more complicated if
the periodic oscillator is driven by a chaotic force or
if a chaotic oscillator is driven by another chaotic os-
cillator. Here, we analyze the phase difference in uni-
directionally coupled chaotic oscillators with slightly
mismatched parameters. We show by examples that
the above statement about a periodic oscillator can be
naturally generalized for the chaotic case. Specifically,
we show that if the parameters of chaotic master and
slave systems are mismatched in such a way that the
mean frequency of the free slave system is grater than
the mean frequency of the master system then in syn-
chronized state the phase of the slave system is ahead
of the phase of the master system. We demonstrate this
with unidirectionally coupled chaotic Rössler systems
as well as with the Hindmarsh–Rose neurons in the
regime of chaotic bursting.
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2.1 Rössler systems

First, we analyze the dynamics of phase difference in
two unidirectionally coupled chaotic Rössler [33] sys-
tems with slightly mismatched parameters:

ẋ1 = −ω1y1 − z1, (1a)

ẏ1 = ω1x1 + ay1, (1b)

ż1 = b + z1(x1 − c), (1c)

ẋ2 = −ω2y2 − z2 + k(x1 − x2), (1d)

ẏ2 = ω2x2 + ay2, (1e)

ż2 = b + z2(x2 − c). (1f)

Here, (x1, y1, z1) and (x2, y2, z2) are dynamic vari-
ables of master and slave systems, respectively. The
parameters a = 0.165, b = 0.2, c = 10, ω1 = 0.95,
and ω2 = 0.99 are chosen in such a way that for the
zero coupling strength, k = 0, both systems are in
chaotic regime. The parameters ω1 and ω2 define the
characteristic frequencies of the master and slave sys-
tems. We take ω2 > ω1 to make the slave system faster
than the master system. Note that the equations similar
to Eqs. (1a)–(1f), but with the bidirectional coupling,
have been considered in [7] to demonstrate the phe-
nomenon of PS of chaotic oscillations.

We define the phases ϕ1,2(t) of chaotic signals
x1,2(t) of the system (1a)–(1f) using the Hilbert trans-
form [7, 36]:

x1,2(t) + ĩx1,2(t) = A1,2(t)e
iϕ1,2(t). (2)

Here, functions x̃1,2(t) are the Hilbert transforms of
x1,2(t), and A1,2(t) are the amplitudes of chaotic sig-
nals. The mean frequencies of the oscillators can be
defined as Ω1,2 = 〈ϕ̇1,2(t)〉. The mean frequency Ω1

of the master system is independent of the coupling
strength k, while the mean frequency Ω2 of the slave
system does depend on k: Ω2 = Ω2(k). In what fol-
lows, we denote the natural mean frequency of the
free slave system as Ω0

2 ≡ Ω2(0). For the Rössler sys-
tems, we obtain Ω1 ≈ 0.969 and Ω0

2 ≈ 1.019, i.e.,
Ω0

2 > Ω1.
As stated above, the inequality

Ω0
2 > Ω1 (3)

represents the main necessary condition in our con-
jecture about the existence of the PS regime with the
advanced phase of a slave system.

Fig. 1 PS of chaotic oscillations for unidirectionally coupled
nonidentical Rössler systems with an advanced phase of the
slave system: (a) Dynamics of the phase difference for differ-
ent coupling strength values; (b) Histogram of the phase differ-
ence for k = 0.14; (c) The difference between mean frequencies
Ω2 − Ω1 as a function of coupling strength k. The solid curve
represents a polynomial fitting of the numerical results shown
by dots (Color figure online)

The dynamics of the phase difference ϕ2(t)−ϕ1(t)

for different values of the coupling strength k is shown
in Fig. 1(a). As the coupling is increased, we observe
a transition from the regime, where the phases rotate
with different velocities ϕ2 −ϕ1 ∼ �Ωt , �Ω = Ω2 −
Ω1 > 0, to the synchronous state, where the phase dif-
ference does not grow with time, �Ω = 0. In this syn-
chronous state, the phase difference oscillates around
some mean positive value θ0 = 〈ϕ2(t) − ϕ1(t)〉 > 0.
This is evident from the histogram of the phase dif-
ference presented in Fig. 1(b). Thus, the phase of the
slave system is ahead of the phase of the master system
when inequality (3) holds, i.e., the above conjuncture
is indeed true for the Rössler systems.

Figure 1(c) shows the dependence of the differ-
ence between mean frequencies �Ω = Ω2 − Ω1 on
the coupling strength k. The characteristic value of the
coupling strength at which this difference turns to zero
defines the threshold of the PS. The threshold value of
the PS can be estimated analytically in a similar way
as in [7]. For the Rössler attractor, a phase ϕ and an
amplitude A can be alternatively introduced through a
polar coordinate system x = A cosϕ and y = A sinϕ

and the approximate equation for the phase difference
θ = ϕ2 − ϕ1 can be derived:

θ̇ = ω2 − ω1 − kA1

2A2
sin θ. (4)
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Fig. 2 The dynamics of the phase difference (left-hand col-
umn) and the probability density function of the phase differ-
ence (right-hand column) for coupled chaotic Rössler systems in
the presence of noise with different amplitudes: (a)–(b) D = 0;
(c)–(d) D = 0.001; (e)–(f) D = 0.01; (g)–(h) D = 0.05. The
value of the coupling strength is k = 0.2 (Color figure online)

If we neglect the variation of amplitudes and sup-
pose that A1 ≈ A2, we obtain the threshold of the PS
kp = 2(ω2 −ω1) = 0.08, which is in reasonable agree-
ment with the numerical results presented in Fig. 1(c).
The value of the stationary phase difference θ0 =
arcsin[2(ω2 − ω1)/k] ≈ 0.61 derived from Eq. (4) is
also in rough agreement with the mean phase differ-
ence 〈ϕ2 − ϕ1〉 ≈ 0.84 numerically obtained from the
histogram shown in Fig. 1(b).

To analyze the sensitivity of the above effects to
small external perturbations, we added to the RHS of
Eqs. (1a)–(1f) the white Gaussian noise terms Dξn(t)

with 〈ξn(t)〉 = 0 and 〈ξn(t)ξn′(t ′)〉 = δn,n′δ(t − t ′).
Here, the parameter D governs the amplitude of noise,
δn,n′ is the Kroneker delta, δ(t) is the Dirac delta func-
tion, and n = 1 . . .6 denotes the number of equation in
system (1a)–(1f). The results of simulations are pre-
sented in Fig. 2. We see that the dynamics of the phase
difference as well as the probability density function
remains insensitive to noise when the noise amplitude
is increased up to the value D = 0.01. Sufficiently
large noise D = 0.05 causes the phase drift effect,
however, the probability density function of the phase
difference still has the pronounced maximum. These
results show that the effect of the chaotic phase syn-
chronization with the advanced phase in the slave sys-
tem is robust against noise.

2.2 Hindmarsh–Rose neurons

Now we support our conjuncture with the example
of chaotic neural systems. We consider two unidirec-
tionally coupled Hindmarsh–Rose [34] neurons with
slightly mismatched parameters:

C1ẋ1 = y1 + x2
1(b − ax1) − z1 + J0, (5a)

ẏ1 = c − dx2
1 − y1, (5b)

ż1 = r
[

s(x1 − xst) − z1
]

, (5c)

C2ẋ2 = y2 + x2
2(b − ax2) − z2 + J0

+ k(x1 − x2), (5d)

ẏ2 = c − dx2
2 − y2, (5e)

ż2 = r
[

s(x2 − xst ) − z2
]

. (5f)

Here, (x1, y1, z1) and (x2, y2, z2) are the dynamic
variables of master and slave neurons, respectively.
We suppose that all the parameters of neurons are
identical except for the membrane capacities C1,2. We
take C2 < C1 to make the slave neuron faster than
the master. We fix the values of parameters in such
a way: a = 1, b = 3, c = 1, d = 5, s = 4, r = 0.005,
xst = −1.6, J0 = 3.25, C1 = 1.

For these values of parameters, the dynamics of the
master neuron is shown in Fig. 3(a), while the dy-
namics of the slave neuron is presented in Figs. 3(b)–
(e) for the different values of the coupling strength k.
The master neuron demonstrates chaotic bursting. The
free (k = 0) slave neuron is in the regime of periodic
spiking; however, with the increase of the coupling
strength its dynamics becomes chaotic and a transition
to the PS is observed.

The Hindmarsh–Rose neuron has two characteris-
tic time scales and the definition of a phase for this
system is not trivial. A suitable definition, which we
use in our analysis, has been introduced in [37]. The
Hindmarsh–Rose attractor has a single rotation center
in [ẋ(t), ẋ(t − δt)] plain and its phase can be defined
as [37]

ϕ = arctan

[

ẋ(t − δt) − α1

ẋ(t) − α2

]

, (6)

where (α1, α2) are the coordinates of the rotation cen-
ter and δt is a suitable delay time. The trajectory of the
master neuron in the plane [ẋ(t), ẋ(t −δt)] is shown in
Fig. 4(a). In the phase definition (6), we take δt = 0.5,
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Fig. 3 (a) Dynamics of the master and (b)–(e) slave Hind-
marsh–Rose neurons for C2 = 0.7 and for different cou-
pling strength values: (b) k = 0; (c) k = 0.56; (d) k = 0.84;
(e) k = 1.5 (Color figure online)

α1 = 0 and α2 = −1. The phase of the slave system
is difficult to define for transient regimes like those
shown in Figs. 3(c) and (d), since the trajectory loses
the rotation center. However, for the free slave sys-
tem [Fig. 3(b)] as well as for the synchronized slave
system [Fig. 3(e)] the phase definition (6) is appli-
cable. The trajectory of the slave system in the plain
[ẋ(t), ẋ(t −δt)] for the synchronized state at k = 1.5 is
depicted in Fig. 4(b). Figure 4(c) shows the dynamics
of phases ϕ1,2(t) of the master and slave systems for
k = 1.5 (in this plot they are indistinguishable). The
phases of neurons change fast when the neurons spike;
otherwise, the phases change slowly. When a spike oc-
curs, the phase increases by a value of 2π . The dy-
namics of phase difference ϕ2(t) − ϕ1(t) is shown in
Fig. 4(d). The phase difference is approximately zero
between the spikes and briefly increases when spikes
occur. The positiveness of the phase difference means
that the phase of the slave neuron is ahead of the phase
of the master neuron, i.e., the slave fires before the
master. The mean frequencies of the master and the
free slave neuron estimated from phase definition (6)
are Ω1 ≈ 0.195 and Ω0

2 ≈ 0.227. Thus the inequal-
ity (3) holds and this model supports our main conjec-
ture as well.

Note that the mean frequencies of the slave and
master systems can be estimated in a simpler way,
without a recourse to the Hilbert transform compu-
tations or phase definition (6). The mean frequency
of a neuron can be evaluated as its mean firing rate

Fig. 4 (a) and (b) The trajectories of the master and slave
neuron (k = 1.5), respectively, in the plain [ẋ(t), ẋ(t − δt)].
(c) The phase dynamics of the master and slave (k = 1.5) neu-
ron. (d) The dynamics of the phase difference between the mas-
ter and slave neuron at (k = 1.5). The membrane capacity of the
slave neuron is C2 = 0.7 (Color figure online)

(MFR). By the MFR of a neuron, we mean a ratio
ν = N�t/�t , where N�t is the number of spikes on
a given (sufficiently large) time interval �t . The quan-
tity ν is simply related with the above mean angular
frequency Ω : Ω = 2πν. Then the general necessary
condition for the existence of the PS with the advanced
phase of the slave system can be presented in the form
ν0

2 > ν1, where ν1 is the mean firing rate of the mas-
ter neuron and ν0

2 is the mean firing rate of the free
slave neuron. For the Hinmarh–Rose neurons with the
mismatched parameters C1 = 1 and C2 = 0.7, we ob-
tain ν1 ≈ 0.0310 and ν0

2 ≈ 0.0362, so that the above
condition indeed holds.

Here, we have presented the analysis of the
Hinmarh–Rose neurons with mismatched membrane
capacities, but the results would be similar if other
parameters of the neurons were mismatched. Specif-
ically, we simulated the Hinmarh-Rose neurons with
mismatched parameters c, d , and xst and in all cases
we where able to achieve the PS with the positive
phase difference between the slave and master neu-
rons provided that the inequity ν0

2 > ν1 holds.

3 Anticipating spike synchronization

The PS with the advanced phase of a slave system
allows us to predict the appearance of chaotic spikes
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of a master neuron by observing the dynamics of the
synchronized slave neuron. Indeed, if the phase of the
slave system is ahead of the phase of the master sys-
tem, one can expect that the slave neuron produces the
spikes before the master neuron. We refer to such a
phenomenon as the anticipating spike synchronization
(ASS). Due to fluctuations of the phase difference of
the synchronized systems, the exact forecasting of the
spikes is impossible; the ASS provides the forecast-
ing only with a finite accuracy. Here, we consider the
ASS effect for the Hindmarsh–Rose neurons and for
the adaptive exponential integrate-and-fire neurons.

3.1 Hindmarsh–Rose neurons

To demonstrate the ASS for the Hindmarsh–Rose neu-
rons, in Fig. 5(a), we show the typical dynamics of
the master and slave systems in a small time inter-
val, which contains only two spikes. The parameter
C2 = 0.7 is the same as in the previous consideration
and the coupling strength k = 1.5 is taken beyond the
threshold of the PS. As is expected, the slave neuron
fires before the master neuron. Since the master and
slave neurons are not identical, the profiles of their ac-
tion potentials differ. Therefore, the ASS cannot be
interpreted as an exact anticipating synchronization,
which is observed in systems with time-delay cou-
pling [12–15]. In the latter case, the slave system pre-
dicts exactly the whole profile of the master signal.

Though the details of action potentials of the mas-
ter and slave neurons are different, there is one-to-
one correspondence between the number of spikes,
i.e., the slave neuron generates a spike before each
spike of the master neuron. We refer to this dynami-
cal regime as the anticipating spike-to-spike synchro-
nization (ASSS). Let us denote by tn the moments
when the membrane potential x1(t) of the master sys-
tem reaches the maxima. The moments correspond-
ing to the nearest maxima of the membrane poten-
tial x2(t) of the slave neuron we denote by t̃n [see
Fig. 5(a)]. The interspike intervals of the master neu-
ron are Tn = tn − tn−1. In Fig. 6(a), we show the prob-
ability density function of Tn. This probability is lo-
cated in two specific regions corresponding to large
and small values of Tn. The small values of Tn are re-
lated to the interspike intervals inside the bursts, while
the large values of Tn represent the intervals between
the bursts. The intermediate values of Tn have a small
probability.

Fig. 5 Membrane potential dynamics of the master (bold black)
and slave (thin red) Hindmarsh–Rose neurons in a small time
interval for (a) the ASSS at k = 1.5 and C2 = 0.7 and for (b) the
ASDSS at k = 1.7 and C2 = 0.2 (Color figure online)

Fig. 6 Statistical characteristics of coupled Hindmarsh–Rose
neurons: (a) The probability density function of the interspike
interval of the master neuron; (b) The intervals τn = tn − t̃n be-
tween the spikes of the master and slave neurons as functions
of interspike interval Tn. The lower blue and upper red points
correspond to the ASSS regime at C2 = 0.7 and k = 1.5 and the
ASDSS regime at C2 = 0.2 and k = 1.7, respectively; (c) and
(d) The relative prediction error εn as a function of interspike
interval Tn for (c) the ASSS at C2 = 0.7 and k = 1.5 and for
(d) the ASDSS at C2 = 0.2 and k = 1.7 (Color figure online)

Now we discuss the statistics of spike prediction.
In Fig. 6(b), we plot the intervals τn = tn − t̃n be-
tween the nearest spikes of the master and slave neu-
ron in dependence on the interspike interval Tn [the
lower blue points in the diagram (b)]. We see that
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this difference is almost constant. The mean value of
this difference can be interpreted as a spike predic-
tion time τ = 〈τn〉. For the given values of the param-
eters, we have τ ≈ 0.256 and the standard deviation
σ = √〈(τn − τ)2〉 ≈ 0.0648. Knowing τ and the mo-
ment t̃n of appearing the nth spike of the slave neuron,
the moment of the nth spike of the master neuron can
be predicted as t

(pred)
n = t̃n + τ . The relative error of

the prediction of the nth spike we define as follows:

εn = |t (pred)
n − tn|

Tn

= |t̃n + τ − tn|
Tn

. (7)

The values of εn in the dependence on the interspike
interval Tn are plotted in Fig. 6(c). The relative error
increases with the decrease of Tn, but it remains below
1 % for any Tn.

The coupling scheme in this neural model satisfies
the requirements of [25] and this allows us to eval-
uate the prediction time by the following analytical
expression: τ = (C1 − C2)/k. This result is obtained
by rewriting the slave system in the form identical
with the master system, but containing a time delay
term in the coupling. Let us rewrite Eqs. (5a) and (5d)
for the membrane potential of the master and slave
neurons, respectively, as C1ẋ1 = f (x1, y1, z1) and
C2ẋ2 = f (x2, y2, z2)+k(x1 −x2), where f (x, y, z) =
y +x2(b−ax)− z+J0. Equation (5d) can be approx-
imately presented in the form C1ẋ2 = f (x2, y2, z2) +
k[x1(t)− x2(t − τ)] provided the delay time τ defined
above is a small parameter. Such a presentation admits
an anticipating synchronization manifold on which the
exact relationship x2(t) = x1(t + τ) between the vari-
ables of the master and slave system exists [12]. Thus,
the above analytical expression for τ indeed evaluates
the value of the prediction time. For the given values
of the parameters C1 = 1, C2 = 0.7, and k = 1.5, we
obtain τ = 0.2, which is in rough agreement with the
above numerical result τ = 〈τn〉 ≈ 0.256.

Taking a look at the analytical expression τ =
(C1 − C2)/k it seems, that the prediction time can
be enlarged by further decreasing the parameter C2,
i.e., by making the slave neuron even faster. However,
the increase of the difference C1 − C2 leads to the in-
crease of the difference between the MFRs ν0

2 − ν1

of the slave and master neurons. The larger mean fre-
quency mismatch requires the larger coupling strength
k to reach the spike-to-spike synchronization, so that
τ remains almost constant when decreasing C2.

Nevertheless, the prediction time can be still en-
larged by exploring a higher order phase synchro-
nization, namely, a subharmonic frequency entrain-
ment with the mean frequency relation Ω1 = Ω2/2.
Numerical analysis shows that for a fixed k and de-
creasing C2 the ASSS regime undergoes a transition
to a new anticipating spike-to-double-spike synchro-
nization (ASDSS) regime in which each spike of the
master neuron is preceded by the double-spike of the
slave neuron. This happens when the MFR of the free
slave neuron approaches the double value of the MFR
of the master neuron, ν0

2 ≈ 2ν1. The ASDSS is demon-
strated in Fig. 5(b) for k = 1.7 and C2 = 0.2 when
ν0

2 ≈ 0.0568. In the ASDSS regime, we can predict
the spikes of the master neuron by fixing the mo-
ment of the first spike in the double-spike sequences
of the slave neuron. Now we denote by t̃n the mo-
ment of the first maximum in this double-spike se-
quence of the slave neuron [see Fig. 5(b)]. The depen-
dence of τn = tn − t̃n on Tn for the ASDSS is shown
in Fig. 6(b) (the upper red points). The prediction time
τ = 〈τn〉 ≈ 1.044 for the ASDSS is four times larger
than that for the ASSS regime. The standard deviation
σ ≈ 0.0238 is almost three times smaller than for the
ASSS. As is seen in Fig. 6(d), the relative prediction
error has also considerably better characteristics than
those of the ASSS.

3.2 Adaptive exponential integrate-and-fire neurons

To demonstrate the universality of the ASSS and the
ASDSS effects, we consider another neural model
with chaotic dynamics: the adaptive exponential in-
tegrate-and-fire neuron introduced in [35]. The AEIF
model is physiologically relevant in that its parameters
can be easily related to physiological quantities. This
model can reproduce correctly the spike trains of de-
tailed physiological neuron models [35] as well as the
firing patterns of real neurons [38].

Though the AEIF neuron is a simple two-equation
model, it can generate (depending on the choice of pa-
rameter values) multiple firing patterns [38, 39]. The
rich dynamics of the model is conditioned by interac-
tion of the differential equations with the reset. Here,
we consider two unidirectionally coupled AEIF neu-
rons characterized by the membrane potential V and
an adaptation current w, whose dynamics is governed
by following differential equations [35]:
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CV̇1 = −gL(V1 − EL) + gL�T exp

(

V1 − VT 1

�T

)

+ I − w1, (8a)

τwẇ1 = a(V1 − EL) − w1, (8b)

CV̇2 = −gL(V2 − EL) + gL�T exp

(

V2 − VT 2

�T

)

+ I − w2 + k(V1 − V2), (8c)

τwẇ2 = a(V2 − EL) − w2. (8d)

The subscripts “1” and “2” stand for the master and
slave neuron, respectively. The last term in Eq. (8c) de-
scribes the coupling, where k is the coupling strength.
When the membrane potential V1,2 of the master or
slave neuron is high enough, the trajectory quickly di-
verges because of the exponential terms. This diver-
gence to infinity models the spike. For displaying or
simulation purposes, spikes are usually cut to some fi-
nite value (e.g., 0 mV). When a spike occurs, the mem-
brane potential is instantaneously reset to some value
Vr and the adaptation current is increased:

if V1 > 0, then

{

V1 → Vr,

w1 → wr = w1 + b,
(9a)

if V2 > 0, then

{

V2 → Vr,

w2 → wr = w2 + b.
(9b)

We take the parameters [35] C = 281 pF, gL = 30 nS,
EL = −70 mV, �T = 2 mV, a = 4 nS, τw = 40 ms,
I = 800 pA, b = 80 pA and Vr = −48 mV of the mas-
ter and slave neuron identical, except of the thresh-
old potential VT , which is responsible for the reac-
tion speed of the neuron. For the master neuron, we
fix VT 1 = −50.4 mV. Then the above choice of the
parameters leads to the chaotic spiking regime of the
master neuron, which is shown in Fig. 7(a). The MFR
of the master neuron is ν1 ≈ 60.4 Hz. To make the
slave neuron faster than the master neuron, we take
VT 2 < VT 1. We emphasize that this parameter mis-
match does not satisfy the requirements of the cou-
pling law proposed in [25], i.e., this scheme cannot
be considered as a first-order approximation of a true
time-delay coupling of the classical Voss scheme.

In Figs. 7(b) and (d), the dynamics of the free
(k = 0) slave neuron is presented for VT 2 = −51 mV
and VT 2 = −52 mV, respectively. For these values
of the parameters, the corresponding MFRs of the
slave neuron are ν0

2 ≈ 71.4 Hz and ν0
2 ≈ 105.1 Hz.

In both cases, the free slave neuron demonstrates

Fig. 7 (a) Dynamics of the master and (b)–(e) slave AEIF
neurons. The diagrams (b) and (d) correspond to the free
(k = 0) slave neuron with the parameters VT 2 = −51 mV and
VT 2 = −52 mV, respectively. The diagrams (c) and (e) rep-
resent the ASSS (VT 2 = −51 mV, k = 450 nS) and ASDSS
(VT 2 = −52 mV, k = 600 nS) regimes, respectively (Color fig-
ure online)

Fig. 8 The dynamics of (a) the master and the (b)–(c) slave
neuron in the regime of (b) the ASSS, and (c) the ASDSS. The
parts (a), (b), and (c) represent the enlargements of the dia-
grams (a), (c), and (e) of Fig. 7, respectively (Color figure on-
line)

chaotic bursting. When the coupling with an appro-
priate strength is switched on, the first case leads to
the ASSS [Fig. 7(c)], while the second case—to the
ASDSS [Fig. 7(e)]. To demonstrate the ASSS and the
ASDSS regimes more visibly, we enlarge the small
time interval of the diagrams (a), (d) and (e) of Fig. 7.
These enlargements are depicted in the parts (a), (b),
and (c) of Fig. 8, respectively.
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Fig. 9 The same graphs as in Fig. 6 but for the AEIF neurons.
The parameters of the slave neuron for the ASSS and ASDSS
regimes, respectively, are: VT 2 = −51 mV, k = 450 nS and
VT 2 = −52 mV, k = 600 nS (Color figure online)

The statistical characteristics for the AEIF neurons
are presented in Fig. 9. In the ASSS regime, the time
of prediction is τ = 〈τn〉 ≈ 0.431 ms and the standard
deviation is σ ≈ 0.0299 ms. For the ASDSS regime,
the corresponding parameters are: τ ≈ 1.131 ms and
σ ≈ 0.0411 ms. The relative prediction error in the
both regimes is less than 1 %. Thus, this model demon-
strates similar effects as have been observed in the
Hindmarsh–Rose neurons.

Note that the MFR of the free slave neuron for
the Hindmarsh–Rose systems and for the AEIF sys-
tems has been controlled by different strategies. In the
Hindmarsh–Rose systems, the MFR of the slave neu-
ron has been regulated by the membrane capacity C2,
while here we regulate it by the threshold potential
VT 2. Despite this difference, the transition from the
ASSS to the ASDSS regime was observed in both sys-
tems. The ASSS appears when the MFR of the free
slave neuron is slightly larger than the MFR of the
master neuron, and the ASDSS takes place when the
MFR of the free slave neuron is close to the double
MFR of the master neuron.

4 Conclusions

In this paper, the anticipating synchronization in unidi-
rectionally coupled chaotic systems with mismatched

parameters has been analyzed. We have shown that if
the mean frequency of the free slave system is greater
than the mean frequency of the master system their
phases may synchronize in such a way that the phase
of the slave system is ahead of the phase of the master
system. Applying to neural systems, this regime man-
ifests itself as the anticipating spike synchronization,
which means that in unidirectionally coupled neurons
the slave neuron anticipates chaotic spikes of the mas-
ter neuron.

The anticipating spike synchronization effect has
been demonstrated with two different models of cha-
otic neurons, namely, the Hindmarsh–Rose neurons
and the adaptive exponential integrate-and-fire neu-
rons. Though a different parameter mismatch has been
used in the neural models, the anticipating spike syn-
chronization phenomenon has manifested itself in a
similar way. For a small parameter mismatch, when
the mean firing rate of the free slave neuron was
slightly greater than the mean firing rate of the master
neuron, the regime of the anticipating spike-to-spike
synchronization was detected. For a larger parame-
ter mismatch, when the mean firing rate of the free
slave neuron was close to the double mean firing rate
of the master neuron, the transition to the anticipat-
ing spike-to-double-spike synchronization regime was
observed. The anticipating spike-to-double-spike syn-
chronization provides larger anticipation time and has
better statistical properties than those of the anticipat-
ing spike-to-spike synchronization.

We believe that our findings are relevant to real neu-
ral systems, since our analysis shows that the condi-
tions for the existence of the anticipating spike syn-
chronization are very weak; it may appear in non-
identical neurons with rather arbitrarily mismatched
parameters and without time-delay feedback in the
coupling. The considered phenomenon may provide a
mechanism for compensating or even surpassing the
communication delays between neurons, which appear
due to the finite speed of propagation of information in
axons.
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