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Abstract

We present a linear analysis for a recently proposed modification of the delay feedback control technigue that allows one
to stabilize unstable periodic orbits of a strange attractor over a large domain of parameters. The method uses a continuous
feedback loop incorporating information from many previous states of the system in a form closely related to the amplitude
of light reflected from a Fabry-Perot interferometer. We illustrate the possibility of stabilizing high-periodic orbits and fixed

points with large values of Lyapunov exponents.

An interesting and challenging research subject re-
cently arisen in the field of nonlinear dynamical sys-
tems is the control of chaos, namely, the investigation
of bringing order into chaos. Roughly speaking there
are two kinds of ways to control chaos: feedback con-
trol [1-22] and nonfeedback control [23-27]. Non-
feedback control changes the controlled orbit of the
system and requires comparatively large perturbations.
In this Letter we focus on feedback control. For chaotic
systems, such a type of control has been used for the
first time by Ott, Grebogy and Yorke (OGY) [1]. The
key idea is to take advantage of unstable periodic or-
bits (UPQOs) embedded in a strange attractor. As the
system approaches an UPO, the strength of the per-
turbation required to keep it there vanishes, so that
the smallness of the feedback signal is limited only
by the noise level in the system. The OGY method
does not require any a priori analytical knowledge of
the system dynamics and has been successfully ap-
plied to various physical experiments, including mag-

! Permanent address.

netic ribbon [2], spin wave [3], chemical [4], elec-
tric diode [5], laser [6], cardiac [ 7] and neuronal [ 8]
systems. The OGY method and its various modifica-
tions [4-12] (see also Ref. [13] for a survey) are
discrete in time since they deal with the Poincaré map
of the system. Because of that they are sensitive to
noise [ 1]. None of these techniques can be scaled up
to significantly higher frequencies since they involve
discontinuous adjustment of the control parameter.

An alternative approach based on continuous-time
control has been suggested by the present author [ 14-
16]. The method deals with a chaotic system that can
be simulated by a set of ordinary nonlinear differential
equations [14],

y=P(y,x)+ F(t), x=0(y.x). (1)
We imagine that Eqs. (1) are unknown, but some
scalar variable y(r) can be measured as a system out-
put. The vector x(r) describes the remaining variables

of the system that are not available or are not of interest
for observation. The complete state of the unperturbed
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system is determined by the vector {y(1),x(¢)}inan
nr-dimensional phase space I'. F(t) denotes an ex-
ternal continuous-time perturbation. The idea behind
it is to construct this perturbation in such a way that
it does not change the desired UPO of the system,
but only changes the corresponding Lyapunov expo-
nents so that the orbit becomes stable. Different types
of perturbations satisfying this requirement have been
considered [14,16,17]. The most interesting from an
experimental point of view is the technique based on
the delay feedback perturbation [ 14],

F(t) = F(y(1),y(t — 1)) =K[y(t — 1) —y(1)].
(2)

This perturbation vanishes on the period-k UPQ if the
delay time T coincides with the period Ty, of this UPO,
7 = T. Thus, if stabilization is successful there is no
power dissipated in the feedback loop. The method
does not require any preliminary or on-line analysis of
the system dynamics and can be implemented in any
experiment by a purely analog technique. The method
has been successfully applied to nonautonomous
[18,19] as well as autonomous [ 20] electronic chaos
oscillators and to a laser system [21]. Unfortunately,
the domain of the system parameters over which con-
trol can be achieved is limited [ 14]. The method fails
for high-period orbits.

To overcome this problem, Socolar, Sukow and
Gauthier [22] have recently proposed a generaliza-
tion of the feedback law (2) utilising the information
from many previous states of the system,

F(1) = K((l =R} R"y(t ~ mr) -y{z:-).
=1
(3)

where 0 < R < 1 and K are experimentally adjustable
constants. For any R, perturbation (3) vanishes when
the system is on the UPO since y(t — m7) = y(1)
for all m if = = T;. Thus, this feedback also en-
sures small values of the perturbation in the case of
successful control. It is interesting to note [22] that
Eq. (3) represents precisely the signal reflected from
an interferometer consisting of mirrors with reflectiv-
ity R, spaced in such a way that the round-trip tran-
sit time in the cavity is equal to the period of the
UPO [28]. Hopefully, a Fabry—Perot interferometer

can be used to control chaos in optical systems. At
R = 0Egqg. (3) turns into the original feedback law (2).
It has been suggested [22] that the methods based
on the original feedback law (2) and on the modi-
fied feedback (3) should be called time delay auto-
synchronization (TDAS) and extended TDAS (ET-
DAS), respectively. We do so in this paper.

The authors of Ref. [22] have demonstrated the ad-
vantages of ETDAS experimentally by applyingittoa
high-frequency chaotic electrical circuit: a diode res-
onator [29] driven at 10 MHz. It turns out that exper-
imental implementation of ETDAS is very easy. The
infinite series in Eq. (3) was generated with a sin-
gle delay line. They managed to stabilize UPOs over
a wide range of system parameters far away beyond
the threshold of chaotic instability, where the origi-
nal TDAS scheme fails. The aim of this Letter is to
amplify these investigations by a theoretical analy-
sis based on the calculation of Lyapunov exponents
for various dynamical systems under ETDAS control.
This linear characteristic determines the rate at which
the system approaches or diverges from the UPO and
serves as a good criterion of control. It defines not
only the domain of the system parameters where con-
trol is possible but also the quality of the control in
this domain.

Before defining the variational equations for Lya-
punov exponents, let us rewrite Eq. (3) in a more
convenient form,

F(t) =K[(1-R)S(t —7) —y(D)],
S(t) = y(1) + RS(t — 7). (4)

Here we have replaced the sum S(f) = 3 R™y(1—
m7) by an equivalent delay equation. If we are inter-
ested in solutions of this equation at times ¢t = 0, it
becomes necessary to define the initial sum S(¢) in the
entire interval [ —7,0], S(@) = 5,(@), —71< @ <0,
where Si, (@) is a given continuous initial function in
a suitable function space C. The state of the delay sys-
tem at time ¢ can be described by an extended state
vector S; € C constructed in the interval [t — 7, 1] ac-
cording to the prescription S,(®) = S(t1 + @), —7 <
@ < 0 [30]. To ensure the uniqueness of the solutions
of the perturbed system (1) one requires to extend
the initial phase space I' by the infinite-dimensional
function space C.
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Fig. 1. Maximal nonzero Lyapunov exponent A of the Rossler system (6) versus the weight K of the perturbation for (a) period-one UPO
(7 =T = 588), (b} period-six UPO (r =T = 35.01) and (c) period-ten UPQ (7 = Tp = 58.48) at various values of the parameter R:
R=0(1),R=02(2), R=04(3), R=06 (4) and R=0.8 (5). The inserts show the x-y phase portraits of the stabilized orbits. The
parameters of the Rissler system (Eq. (6)) are a =02, b=02, c=5.7.

The Lyapunov exponents of Egs. (1), (4) cor-
responding to the period-k UPO {y;(1),x;(1)} =
{J’k(f'l"Tk) » X (f—l'-T;,}} are determined b)" variational
equations,

g Y
ﬁy—ﬁ)'ayf’(}'.t--xt] +c‘ix8xP(}'.t.n)
+ K[(1 - R)86S(t —T) — dy(1)1,
d d
ok = 5)'5(20’&.!&} + SIEQ(J’R:'I&)'
88(t) = 6y(r) + R&S(t —Ty). (5

Here 8y = y — i, 0x = x — xp, and 65 = S — &
define the deviation of the system from a periodic
orbit. Because of the infinite dimension of the phase
space, the system has an infinite number of Lya-
punov exponents. In the numerical integration of

Egs. (5) or (1), (4), we are able to consider only
a discrete, finite-dimensional version of these equa-
tions. Then the dimension ng of the functional space
C becomes finite, n¢ = 7/h, where h is the time
step of the integration ?. The complete state of the
system is defined by the (nr + ne)-dimensional vec-
tor {y(1),x(1),8(1),85(1),...,8.—1(t)} where
Si(¢) = S(t —tht), i =0,1,...,nc — 1. It is con-
venient to perform the numerical integration by the
Runge-Kutta method of second order. Unlike the
methods of higher order, it does not require the knowl-
edge of the delayed signal S(¢t — ) at the moments
inside the integration intervals.

For our purpose, we do not need to estimate the
whole spectrum of Lyapunov exponents; it suffices

2 The step h is chosen such that r/k is an integer number.
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Fig. 2. Root-mean-square deviation o of the perturbation versus
the delay time 7 close to the period-one UPO of the Rissler
system at K = 0.2 and different values of the parameter R: R=0
(1, R=02(2), R=04 (3), R=056 (4) and K =08 (5).
The parameters of the Rissler system are the same as in Fig. 1.

to determine only the largest nonzero Lyapunov ex-
ponent. The most suitable technique for calculating
only several largest Lyapunov exponents is that devel-
oped by Bennetin at al. [31] and by Shimada and Na-
gashima [32]. For autonomous systems, we have to
calculate the two largest Lyapunov exponents if we are
interested not only in stabilization but also in the con-
vergence rate of nearby orbits to the desired UPO. For
such systems, the largest Lyapunov exponent of the
stabilized UPO is equal to zero. For nonautonomous
systems, it always suffices to determine only the first
largest Lyapunov exponent since these systems do not
have a zero exponent associated with a tangent to the
flow direction.

In Figs. 1-3, we present the results of ETDAS con-
trol for two chaotic oscillators. The first model is the
autonomous Rassler system [33],

¥=—-y—2z, y=x+ay+F(1),

i=b+z(x—y), (6)

where F(t) is defined by Eq. (4). Fig. 1 shows the de-
pendence of the maximal nonzero Lyapunov exponent
A on the weight K of the perturbation for different val-
ues of the parameter R. Cases (a)-(c) correspond to
period-one, period-six, and period-ten UPOs, respec-
tively. In all cases, ETDAS significantly improves the
control in comparison to the original TDAS scheme
(R = 0). The interval of K where control is achiev-
able (A(K) < 0) increases with increasing R. More-

over, if R is not very large, the minimum of A(K) is
deeper as compared to the case of TDAS. This pro-
vides a faster convergence rate of nearby orbits to the
desired UPO and makes the method more resistant to
noise. The efficiency of ETDAS is most evident for
the period-ten UPO. The original TDAS scheme fails
for this orbit; at R = 0 the maximal Lyapunov expo-
nent A(K) is positive for any K. However, this orbit
can be stabilized by ETDAS at R > 0.5.

An interesting question is how ETDAS changes the
dependence of the amplitude of the perturbation on
T when varying this parameter close to the period
T, of the desired UPO. For TDAS, we have illus-
trated [14] that this dependence exhibits resonance-
type behaviour with deep minima at 7 = T}. A similar
dependence but with narrower minima is observed in
the case of ETDAS control. Fig. 2 shows a root-mean-
square deviation o = \/(F?(1)) of the perturbation as
a function of the delay time 7 close to the period-one
UPO of the Rossler system. An observed narrowing
of the resonance curves with increasing R can be ex-
plained as follows. Since the feedback F(t) (4) is
a linear function of the output signal y(r), one can
introduce the transfer function P(w) = F(w)/y(w)
where F(w) and y(w) are the Fourier integrals of
the signals F(t) and y(t), respectively. The ETDAS
feedback leads to the following expression,

elor _1
ol . sibind iy
bl g 17

(7)
Since the perturbation vanishes when the system is on
the UPO, the frequency components of the output sig-
nal at exact multiples of the UPO period are filtered
out of the feedback P(27rm/7),m=0,%1,+2,...at
7 = T}. Close to these frequencies, |P(w)| has reso-
nance minima, the width of which decreases with in-
creasing R. This causes the narrowing of the resonance
curves presented in Fig. 2. Note, that a frequency-
domain analysis of the controlled system provides a
partial answer to the question why ETDAS control is
so successful [22]. As R tends to 1, the transfer func-
tion P(w) becomes a plateau P(w) = — K almost for
all frequencies except for narrow windows close to the
points @ = wy, = 27/T;,, m=0,+1,42,. ... Thus, as
R is increased the feedback becomes more sensitive
almost for all frequencies except for those belonging
to the UPO.
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Fig. 3. Maximal Lyapunov exponent A of the Duffing oscillator (8) versus the weight K of the perturbation for (a) period-one UPO
(r=T =2m/w), (b) pericd-three UPQ (r=T3 = 6m/w) and (c) period-five UPQ (7 =Ts = 107 /w) at various values of the parameter
R:R=0(1), R=02(2), R=04 (3), R=0.6 (4) and R = 0.8 (5). The parameters of the Duffing system (Eqg. (8)) are a = 2.5,

w=1,d=0.02.

The second model that we have analysed is the
nonautonomous Duffing oscillator [34],

.i:y;

y=—dy+x—x +acos(wt) + F(1). (8)

The dependence of the Lyapunov exponents on K
for period-one, period-three, and period-five orbits is
shown in Fig. 3. Qualitatively the results are similar to
those presented in Fig. 1. The increase of the param-
eter R widens the interval of the parameter K where
stabilization is achievable, and makes possible the sta-
bilization of high-period orbits for which the TDAS
technique fails.

Some insight into the source of the improved per-
formance obtained with ETDAS can be gained by
considering the problem of stabilizing unstable steady

states of the system. In Ref. [ 14], we have illustrated
the possibility of stabilizing unstable fixed points by
the TDAS technique. Here we consider how ETDAS
changes the conditions of this stabilization. Remark-
ably, this analysis is based on linear equations that can
be treated analytically. The advantages of the discrete
version of ETDAS when stabilizing the fixed points
of discrete maps have been illustrated by the authors
of Ref. [22]. Unlike this, our investigation is based
on continuous-time systems.

Let us start our analysis from a simple “one-
dimensional” unstable fixed point y = O under ETDAS
control,

y=A + F(r). (9

Here A’ > 0 is the eigenvalue of the unperturbed
fixed point and F(t) is defined by Eq. (4). Using the
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substitution y(t) = C e*’ one obtains the equation

e~ 1

1= Re-4
defining the eigenvalues A of the controlled system.
With respect to A, Eq. (10) has an infinite number of
complex solutions A = A;; the spectrum of the Lya-
punov exponents is determined by Re A;. Stabilization
is possible if for some values of the parameters K, 7
and R all Lyapunov exponents Re A; become negative.
It is easy to show that Eq. (10) has at least one pos-
itive Lyapunov exponent at any values of the param-
eters. To this end, it suffices to analyse only the real
(Im A = 0) solutions of Eq. (10). They can be esti-
mated graphically by depicting the dependence K =
K(A). Thus, the ETDAS technique fails for “one-
dimensional” fixed points. The minimal number of de-
grees of freedom at which this technique starts to work
is two.

Let us consider a “two-dimensional” fixed point
{x =0,y =0} under ETDAS control,

o e S (10)

i=ax+by, y=cx+dy+F(1). (11)

The parameters a, b, ¢, and d define the type of fixed
point. At A = ad — be < 0 we have a saddle, and at
4 > 0 we have a knot or focus. The eigenvalues of
the controlled system satisfy

—AT .|

Az—(a+d)A+.d+K(a—A)ﬁ =0. (12)

Re
An analysis similar to that described above shows that
at 4 < 0 and any values of the other parameters
Eq. (12) has at least one real positive eigenvalue. It
means that the “two-dimensional” saddle cannot be
stabilized by the ETDAS technique. However, ETDAS
works for any “two-dimensional” focus or knot. Fig.
4 illustrates the domains of successful stabilization of
the fixed pointata=0,b= —1,c = 1,and d > O being
the control parameter. In this case, the eigenvalues of

the unperturbed fixed pointare A} , = Jd+,/1d* — 1.
At 0 < d < 2 we have an unstable focus with the
Lyapunov exponent equal to 3d and eigenfrequency
@” = /1 — 1d?. Atd > 2 the fixed point turns into an
unstable knot with the maximal Lyapunov exponent
equal to 3d + 1/ 3d* — 1. In both cases, the maximal

Lyapunov exponent of the fixed point increases with

10> 05

Fig. 4. Domain of stabilization of a “two-dimensional” fixed point
(a) in the two-dimensional plane of the parameters, K-d, at a fixed
value of the parameter + = 7 and various values of the parameter
R R=0(1),R=02(2),R=04(3),R=06(4), R=0.8 (5)
and (b) in the three-dimensional space of the parameters r-K-d,
at a fixed value of the parameter R = 0.5. The other parameters
of the fixed point (Eq. (11}) are a=—1, b=0,c=1.

increasing d. Thus, d characterizes the degree of un-
stability of the unperturbed fixed point. Fig. 4a shows
the regions of effective control in the K-d plane for
various values of the parameter R and a fixed value of
the parameter 7. The regions correspond to the con-
dition Re A; < 0, where A = A; denotes all possible
solutions of Eq. (12). As can be seen from the fig-
ure, the TDAS scheme (R = 0) works only for un-
stable focus with a Lyapunov exponent restricted by
d < 1.216. The ETDAS extends the operating range
of the method for an unstable knot with an arbitrar-
ily large Lyapunov exponent. The greater R, the larger
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the interval of the parameter d over which the method
works. As R tends to 1 this interval becomes infinitely
large.

Although ETDAS opens up possibilities for stabi-
lizing a high-unstable fixed point, in this case it re-
quires a careful fitting of the control parameters. For
large d, the parameter R has to be chosen close to 1
and the stabilization turns out to be only possible in a
narrow interval of the parameter K. A similar effect is
observed when stabilizing UPOs of chaotic systems.
As is seen from Figs. 1 and 3, the stabilization of high-
period UPOs can be only achieved with a large value
of the parameter R and only in a narrow interval of
the parameter K. Another general feature of ETDAS
that holds for the fixed point as well as for the UPOs
is that the interval of the parameter K corresponding
to stabilization shifts towards larger values of K and
increases when increasing R. Thus, Eqs. (11), (3)
can be considered as the simplest mathematical model
illustrating the general properties of ETDAS control.

In the stabilization of UPOs, the parameter 7 has to
be fixed equal to the period of the desired UPO. By
contrast, in the stabilization of the fixed point, the pa-
rameter 7 can be chosen arbitrarily. Fig. 4b shows the
influence of this parameter on the efficiency of sta-
bilizing the fixed point. The domain of stabilization
is illustrated in the three-dimensional parameter space
7,K and d at a fixed value of the parameter R. The
vertical bars show the local intervals of the parame-
ter d for which the stabilization of the fixed point is
possible and hence define the local efficiency of the
method. It is evident from the figure that the efficiency
of the method has a resonance-type dependence on
7. The method is most efficient for 7 = (2m + 1),
m=0,1,2,... and less efficient for 7 = 2mm, m =
0,1,2,.... The transfer function (7) of the feedback
is again useful in understanding this resonance depen-
dence. This function has maxima at et = (2m+ 1),
m=20,1,2,... , and minima at @t = 2mm, m =
0,1,2,... . Let us assume, for simplicity, that the
fixed point is a focus with a small value of the param-
eter d. Then the main frequency transmitted into the
feedback loop will be the eigenfrequency of the focus
@ = @” ~ 1. Thus, the values of 7 corresponding to
the maximal and minimal sensitivity of feedback co-
incide with those corresponding to the maximal and
minimal efficiency of the method.

Note, that the problem of stabilizing fixed points by

TDAS or ETDAS technigues is, maybe, more impor-
tant for various applications than the problem of sta-
bilizing UPOs. These techniques do not require any
knowledge of the location of the fixed point in phase
space, and can work for systems whose parameters
vary slowly with time. Here we have restricted our-
selves to the analysis of a “two-dimensional”™ fixed
point. A similar analysis can be performed for a fixed
point embedded in a high-dimensional phase space.
In conclusion, the linear analysis of a recently pro-
posed chaos control method based on ETDAS tech-
nique shows its significant advantages over the orig-
inal TDAS method. The method allows for stabiliza-
tion of UPOs with a large value of the Lyapunov ex-
ponents and high-period UPOs. It can work in the do-
main of parameters of chaotic systems far away from
the threshold of chaotic instability, where the original
TDAS technique fails. The universality of the results
is demonstrated with autonomous and nonautonomous
chaotic systems, and with a simple model describing
the problem of stabilizing an unstable fixed point.
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