Physics Letters A 180 (1993) 99-102
Morth-Holland

PHYSICS LETTERS A

Experimental control of chaos by delayed self-controlling feedback
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A recently proposed method [K. Pyragas, Phys. Lett, A 170 (1992) 421] of chaos control by a small time-continuous pertur-
bation is realized experimentally. The required delayed fecdback is achieved by a specially designed analogue circuit using a
simple delay line. The experimental results are supplemented by computer simulation.

Chaotic attractors typically have embedded within
them an infinite number of unstable periodic orbits.
A few years ago Ott, Grebogi and Yorke (OGY ) em-
ploying this key observation suggested a general way
to control chaos [1]. A desired periodic motion of
an originally chaotic dynamic system can be achieved
through only small, carefully chosen temporal per-
turbations made in an accessible system parameter.
This idea has been developed [2-4] and applied to
a variety of dynamical systems, including mechani-
cal, clectronic, optical systems [5-8]. The OGY
method implies, as a rule, a computer analysis of the
system. Moreover, it deals with the Poincaré maps,
s0 the corresponding parameter perturbations ap-
pear to be time-discrete. This leads to some restric-
tions in applying the method to experimental sys-
tems in which small random noise can resull in
occasional bursts where the trajectory wanders far
from the controlled periodic orbits [1].

Recently one of us (K.P.) proposed two new
methods to control chaos with small perturbations
involved as a time-continuous feedback [9]. One of
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these methods is particularly convenient for exper-
imental applications. The method is based on the
feedback perturbation constructed in the form of the
difference between the delayed output signal and the
output signal itself. This perturbation keeps the de-
sired unstable periodic orbit unperturbed if the delay
time of the output signal coincides with its period.
Stabilization is achieved by adjusting the weight of
the perturbation. The feedback is self-controlled and
the method does not require a computer analysis of
the state of the system. Unlike the OGY method, it
is robust to noise. The continuous feedback pertur-
bation holds the system on the desired periodic orbit
even in the presence of sufficiently large noise. The
system does not experience any occasional bursts into
the region far from the periodic orbit. The increase
in noise leads only to the self-increase of the feed-
back perturbation and to smearing out of the peri-
odic orbit.

The method can be carried out by a simple ana-
logue technique. In ref. [9] it was tested numerically
for various chaotic models including autonomous and
periodically driven systems. In the present paper we
report on the first experimental realization of this
method.

The experimental system was an externally driven
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nonlinear oscillator [10,11] (fig. 1), including a
tunnel diode, as a negative resistance device. The pa-
rameters of the circuit were as follows: L=17.4 pH,
C=510pF, R=5.1 kQ. The external drive frequency
Jex was 3.8 MHz, the drive amplitude 4 was varied
up to 3V, the de bias I/ was always kept less (in con-
trast to ref. [10]) than the critical value for the ap-
pearance of self-sustained oscillations ( =70 mV).
The employed germanium tunnel diode is charac-
terized by the peak current /,= 1.5 mA, and the peak
voltage U, =67 mV.

The dynamics of the oscillator is determined by
the rate equations

dx

— = — 4

s y+o,

—d'rzx—bN{_v]—dy+a sin wi+F(y, 1), 1)

with F(y, 1) =0 for the uncontrolled oscillator. The
dimensionless variables and parameters are given by

x=ZI{U,, y=UlU,, t=t/To, F=ZIIU,,
Z=\/L/IC, Ty=\/LC, a=ZA/RU,,
b=ZILJU,, c=UU,, d=ZJR,,

w=2xl, Ty, T=2n/w. (2)

Here U is the voltage across the capacitance, [ is the
current through the inductance, I is the control cur-
rent, Ry=RR./(R+R,) is the resistance of the par-
allel connected resistances R and R, R, is the load
resistance, ¢.g. due to the control circuit. The nor-
malized current—voltage characteristic of the tunnel
diode can be given in the following form,

Nonlinear oscillator Control circuit
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Fig. 1. Experimental setup.
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with @¢=1.7 and f=0.001.

To realize the control electronically a special an-
alogue circuit (fig. 1) was designed. The parameters
were as follows: R, =1.8 kQ, R,=260 Q, the wave
resistance of the delay line Z,;=260Q (R,=7,). The
maximum delay time of the variable spiral line was
600 ns (one way), i.e. 1200 ns (double way in the
short-circuited line). The transconductance of the
transistor S=11 mA /V. This circuit can be shown to
branch off from the above described oscillator the
feedback control current F(y, 1),

F(y, t)=K[y(t-1)-y(1)] .,
K=hpSZ, =T,/To, (4)

(3)

1.e. just in the form as required in the method of ref.
[9]. Here p=RyZy/ (RyRa+ R, Z3+R,Z,4), and h is
an additional division coefficient (h<1) due to the
slide divider R,. The T, is the adjustable double way
delay time.

Controlling the unstable periodic orbits is very
easy. The delay time Ty is adjusted close to the pe-
riod of the desired orbit by means of the variable de-
lay line. For the described driven oscillator T; must
be close to m/f,,. where m is the periodicity number
of the locked orbit (m=1, 2, ...). Then the switch
*“k* (fig. 1) is turned on and the feedback coefficient
K is increased by means of the slide divider R, until
the stabilization occurs. If necessary the delay time
T4 can be corrected and the whole adjustment pro-
cedure can be repeated to minimize the control signal,

The experimental results, obtained for two differ-
ent amplitudes of the external driving voltage ap-
plied to the oscillator, are shown in fig. 2, The cha-
otic states of the uncontrolled oscillator are
characterized by the broadband continuous spectra.
Meanwhile, there are sharp peaks in the power spec-
tra when the control is on. The position of these dis-
crete lines depends on the periodicity of the stabi-
lized orbits with the lowest frequency corresponding
to fo,/m. In the first case (figs. 2b, 2c) stabilization
of the orbits with m=3 and m=1 is evident, while
the second case (figs. 2e, 2f) illustrates the control
of the cycles with m=4 and m=2,

Locked into a periodic state and adjusted, the con-
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Fig. 2, Experimental power spectra for two different drive ampli-
tudes. (a) Chaotic spectrum, (b) controlled period-three spec-
trum and (¢) controlled period-one spectrum for A=1.2 V. (d)
Chaotic spectrum, (e) controlled period-four spectrum and (f)
controlled period-two spectrum for A=2.5 V., All specira are
shown in the basic frequency range [0, /., ]. The form of the cha-
otic spectra at higher frequencies [f., 2/6 1, [ 2/, 34, ... repli-
cate the spectra in the basic range with an average level decay of
15—20dB in each of these intervals.

trol signals were extremely small, [,=2-3 pA, or
F=(6-8)x10"? corresponding to currents in the
oscillator itself of less than 1%,

In addition, some computer calculations were per-
formed. Numerical solutions of egs. (1) with pa-
rameters close to the experimental values (a=1.40,
b=4.10, ¢=0.92, d=0.15, w=2.25) corresponding
1o the “Chaos 2 regime are presented in figs. 3-5.
Figure 3 illustrates the dynamics of the perturbation
and the output signal before and after switching on
the control. The delay time 7 is chosen to be equal
to the period of the unstable period-two orbit. The
uncontrolled system is characterized by a chaotic be-
havior with desynchronized signals v(¢) and y(f—1).
Switching on the control results in periodical oscil-
lations corresponding to an initially unstable peri-
odic orbit. The signal y(/) tends to y{i—1) and the
perturbation F tends to zero. The finite values of F
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Fig. 3. Calculated dynamics of the output signal y(:), delayed
output signal y(¢—1) and the difference y(r—1) —y(¢) before and
after switching on the control. The vertical dashed line shows the
moment of switching on the control. 1=27T, K=0.5.

observed experimentally are conditioned by the
ohmic losses that are perceptible (= 10%) in the long
spiral delay line.

The stabilization of unstable periodic orbits has
been achieved in experiment only in definite inter-
vals of the weight K of the feedback. Theoretically
these intervals can be determined from variational
equations, defining the Lyapunov exponents of cor-
responding orbits:

déx

W - —3}“[!} |

&y =6x—(hM +d)5y(r)

dt ) = ¥m{l)
+K[dy(i—1)-0p(1)]. (5)

Here dx=x—x,,(7), 8y=y—y,(t) are the small de-
viations from the unstable period-m orbit {x,,(t),
Vul)={x,(t+mT), y,(t+mT)}. The depen-
dence of the maximal Lvapunov exponents 1 on &
for the period-two and period-four orbitals are pre-
sented in fig. 4. The negative value of A(K) <0 de-
fine the intervals of K corresponding to the stabili-
zation. As can be seen from the figure, the period-
four orbit has only a small stabilization interval, while
the interval for the period-two orbit is infinite, i.e.
the stabilization of this orbit can be achicved at any
K= K i, where K, 18 the threshold of the stabili-
zation defined by A(K,;,)=0.

The numerical results of the stabilization at the
fixed values r and K are presented in fig. 5. It is dif-
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Fig. 4. The dependence of the maximal Lyapunov exponent A on
the weight K of the perturbation for (1) period-four and (2)
period-two orbits. The arrows, marked by numbers correspond-
ing to the periodicity of the orbits, show the thresholds of
synchromzation.
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Fig. 5. Calculated phase portraits and power spectra of (a) cha-
otic oscillations, (b) controlled period-four orbit, t=4T,
K==0.17, and (c) controlled period-two orbit, t=2T, K=0.5.
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ficult 1o obtain numerical results exactly coinciding
with the experimental results because of the extreme
sensitivity of the system to the small parameter vari-
ations. However, the spectra presented in fig. 5 are
in good qualitative agreement with the experimental
spectra (figs. 2d-2f) corresponding to the “Chaos
2" regime.

In conclusion, we have verified experimentally the
recently proposed method [9] for continuous con-
trol of chaos, The method does not require either a
computer analysis of the system or computer con-
trol. A special analogue control circuit has been con-
structed. While in electronics the delayed feedback
is usually associated with various instabilities, the
considered control circuit is an example of how the
delay can stabilize the system. The experimental re-
alization of this method is very simple, particularly
for high frequency systems, and we believe it can be
applied to a variety of chaotic dynamical systems,
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