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A method for stabilizing aperiodic orbits of a strange attractor is suggested. It enables the transformation of an unpredictable
chaos into a predictable one by synchronizing the current behavior of a chaotic system with its past behavior. This is achieved by
a small self-controlling feedback perturbation using the past output signal of the system, recorded previously in a memory. An
experimental realization of the method is very simple. It does not require any computer analysis of the sysiem behavior, and can

be carried oul by a purely analogous technique.

1. Introduction

It is well known that the prediction of the long-term
behavior of chaotic systems is practically impossible,
although these systems can be described by strongly
determined dynamic models. Lorenz was the first to
run into this problem when investigating the simple
dynamic model consisting of three nonlinear ordi-
nary differential equations [1]. The actual source of
unpredictability is the property of a nonlinear sys-
tem to separate initially close trajectories by an ex-
ponential law. Since, in practice, one can only fix the
initial conditions of the system with finite accuracy,
the errors increase exponentially fast. The charac-
teristic time of reliable prediction is determined by
the reciprocal of the maximal positive Lyapunov ex-
ponent of the system. Lorenz called this sensitive de-
pendence on initial conditions the “butterfly effect™,
because the outcome of his equations, which de-
scribe in a crude sense the problem of weather fore-
casting, could be changed by a butterfly flapping its
wings.

In spite of this fundamental difficulty, many in-
vestigations in the field of dynamic chaos are de-
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voled to the development of forecasting methods [2-
71]. These are based on building mathematical models
directly from experimental data. The short-term pre-
diction is then obtained as a solution of these models.
It is common for all methods of forecasting to as-
sume that the investigator (forecaster) is a passive
subject, who cannot act on the system. The aim of
this paper is to show that using only a small external
perturbation of a special form, one can synchronize
the current behavior of the system with its past be-
havior recorded previously in a memory. As a result,
a reliable prediction becomes possible for any length
of time.

The method suggested is based on stabilizing aper-
iodic orbits of the strange attractor. It represents a
connection of two ideas, namely, the controlling
chaos [8] suggested by Ott, Grebogi and Yorke
(OGY), and the synchronization of chaos [9,10]
suggested by Pecora and Carroll. OGY have sug-
gested a method to stabilize the unstable periodic or-
bits of the strange attractor by using only a small
feedback perturbation. The idea of Pecora and Car-
roll is based on synchronizing aperiodic orbits of two
strongly coupled chaotic systems. Here we demon-
strate the possibility of the stabilization of aperiodic
orbits by a small feedback perturbation.

The subject of controlling chaotic systems has re-
cently received a fair amount of attention of both
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theoretical [11-17] and experimental workers [ 18-
22]. The standard methods of stabilizing periodic
orbits are discrete in time since they deal with the
Poincaré map of the system. The controlled pertur-
bation is usually applied to the system one time per
period. Recently we have proposed two methods of
permanent control by a small self-controlling feed-
back [17]. They are noise resistant and can be re-
alized in an experiment by an analogous technique.
Here we extend the ideas of these methods for the
case of stabilizing aperiodic orbits.

The paper is organized as follows. The method and
its illustration for the Rossler [23], Lorenz [1], and
Duffing [24] systems are presented in section 2. In
section 3, the problem of stabilizing aperiodic orbits
is reduced to the problem of synchronizing two iden-
tical chaotic systems. This permits the use of the
conditional Lyapunov exponents, introduced by
Pecora and Carroll as a criterion of stabilization. The
influence of restricting the perturbation on the sys-
tem transient dynamics is considered in section 4,
and the conclusions are presented in section 3.

2. Method

Let us consider the chaotic system that can be sim-
ulated by a set of ordinary differential equations
[17],

y=P(y,x)+F(1), x=Q(y,x). (1)

We imagine that eqs. (1) are unknown, but some
scalar variable y(¢) can be measured as a system out-
put. The vector x(f) describes the remaining vari-
ables of the system that are not available or are not
of interest for observation. F(¢) is an external per-
turbation fed to the system input, Here we assume,
for simplicity, that the input signal F(¢) disturbs only
the first equation corresponding to the output vari-
able. A more complicated multi-variable perturba-
tion will be considered in section 3. The block dia-
gram of the method is presented in fig. 1. The
experiment is carried out in two stages. In the first,
preparatory, stage an appropriate segment of the
output signal y,,(1) of the unpertubed system has to
be singled out and recorded in a memory. In the sec-
ond stage, the system can be forced to repeat exactly
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Fig. 1. Block diagram of the method.

the recorded signal by using a small feedback per-
turbation of the form

F(t)=K[yap(t) =y(D)] . (2)

Here K is an experimentally adjustable weight of the
perturbation. The perturbation has to be introduced
into the system as a negative feedback (K=0). The
important feature of this perturbation is that it van-
ishes when the output signal coincides with the sig-
nal recorded in a memory, F(1)=0 at y({) =y, (1).
Therefore, it does not change the solution of the sys-
tem corresponding to the segment of the aperiodic
signal y,,(r). The perturbation performs the func-
tion of self-control, since it always tends to attiract
the current trajectory y(¢) of the system to the de-
sired aperiodic orbit y,,(f). At a sufficiently large
weight K, it can stabilize this trajectory. When the
stabilization is achieved y() = y,,(f), and the per-
turbation becomes very small.

The results of such a stabilization for the Réssler,
Lorenz, and Duffing systems are shown in fig. 2. After
switching on the control, the perturbation is at first
large, but then rapidly decreases to a very small
value ®'. After this transient process, the system be-
gins 1o repeat exactly its previous behavior corre-

# We have tried many different initial conditions for the trajec-
tories y(f) and ¥, (7). The stabilization has been achieved for
all systems considered independent of these conditions,
Therefore, we ignore the possibility of other basins of attrac-
tion for now. Should this problem arise for some systems, we
hope that it can be solved by restriction of the perturbation
[17].
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Fig. 2. Segments of “recorded™ aperiodic output signals y,,(r)
and the dynamics of the output signals y(¢) and the differences
Ay(t)=Yae—y, (a) for the Rissler system: x=—y—z, p=x+
0.2p+ K[yp(t) =], 2=0.24+2(x—-5.7), K=04, (b) for the
Lorenz system: &=10(y—z), y=—xz+28x—y+ K[y, (t) -],
z=xy—}z, K=4, and (c) for the nonautonomous Duffing oscil-
lator: %=y, y=x—x>—dy+acos(wi)+K[y,()=v], a=2.5,
w=1,d=0.02, K=0.4. The arrows show the moment of switch-
ing on the perturbation.
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sponding to the recorded signal y,,(¢). Therefore, the
small feedback perturbation in the form of the dif-
ference between the output signal and the signal re-
corded in a memory forces the system to behave cha-
otically, however, makes it absolutely predictable.
The resulting behavior depends, within certain lim-
its, on our desire. The point is that any one of the
different segments y,,(¢) can be stabilized ¥, and the
choice can be made to achieve the best system per-
formance among those segments.

In a real experiment, the control will be negatively
affected by at least two factors: fluctuation noise and
gradual deviation of the system parameters from their
initial values. These factors lead to the finite ampli-
tude of the perturbation in a post-transient regime.
Figure 3 illustrates the influence of both factors on
the dispersion ¢ F2({)) of the perturbation for the
Duffing system. The amplitude of the perturbation
decreases linearly with the decrease of the noise am-
plitude, as well as with the decrease of the parameter

: deviation. If both factors are small, the stabilization

of the aperiodic orbit can be achieved with a very

¥2 The length of the segment has to be larger than the character-
istic length of the transient process.
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Fig. 3. Dispersion ¢ F2{t)) of the perturbation of the Duffing
oscillator versus (a) dispersion g7 of the external noise and (b)
versus deviation Aa of the amplitude of the external force at three
different values of K: K=0.5 (1), 5 (2) and 50 (3). The noise
has been simulated by adding to the right-hand sides of the Duffing
equations random functions independent of each other, having
the mean value 0, and the mean squared value o2, To simulate
the deviation of the amplitude a, we calculated at first an unper-
turbed aperiodic orbit y,, () at the fixed initial value a=a,=2.5.
Then the dynamics of the perturbed system has been calculated
with the changed value a =a,+ Aa, but with the old function y., (1)
corresponding to a=a,.
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small perturbation F(r), and the experiment can be
performed with a small external signal.

3. Linear analysis

In order to illustrate the law by which the per-
turbed system approaches the desired aperiodic or-
bit, fig. 4 shows the dynamics for the Rssler system
in a half-logarithmic scale. As is evident from the fig-
ure, an asymptotic behavior follows an exponential
law. The characteristic exponent depends neither on
the initial conditions of the desired aperiodic orbit
nor on the current initial conditions of the system
corresponding to the moment of switching on the
perturbation. This is illustrated in fig. 5 for the Lor-
enz system. The features above permit the introduc-
tion of the Lyapunov exponents as characteristics of
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Fig. 4. Dynamics of the differences Ax=x,,—x, Ay=y,—),
Az=z,,—z and Ar=./(Ax)*+ (Ay)*+ (Az)? of the Réssler sys-
tem. K=0.3.
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Fig. 5. Dynamics of the difference Ar of the Lorenz system at
three different arbitrary chosen initial conditions for the signals
Yup(t) and y(1). K=4.
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the linear behavior of system (1) close to the desired
aperiodic orbit. The use of the Lyapunov exponents
is possible in spite of the fact that system (1) is dis-
turbed by a chaotic external signal.

The theory of systems driven with chaotic signals,
including the introduction of the Lyapunov expo-
nents for such systems, has been developed recently
by Pecora and Carroll [9,10]. Our problem can be
reduced to that considered in this theory, and we can
simply use its results. The theory deals with a com-
pound autonomous dynamic system, which can be
divided into two one-way coupled subsystems. By
one-way coupling is meant that the behavior of one
(response) system is dependent on the behavior of
another (drive) system, but the other is not influ-
enced by the behavior of the first. To characterize
the stability of the response system, Pecora and Car-
roll introduced the conditional Lyapunov expo-
nents, the characteristics of the variational equations
of the response system. The name “conditional” has
been used because these equations depend on the
variables of the drive system. It has been shown that
the response system synchronizes with the drive sys-
tem if all conditional Lyapunov exponents are
negative.

Our method can be analyzed by the above theory
since the nonautonomous system presented in fig. 1
can be reduced to a compound autonomous system
consisting of two one-way coupled subsystems. In-
deed, a memory element used in the second stage of
the method (fig. 1) to generate a past output signal
can be replaced by an additional, identical chaotic
system (fig. 6), which, starting at the appropriate
initial conditions, can generate an exactly aperiodic
signal recorded in the memory. As a result, the two-
stage experiment presented in fig. 1 can be replaced
by the physically equivalent one-stage experiment
presented in fig. 6, and the initial problem reduces
to the problem of synchronizing two coupled, iden-
tical chaotic systems. Mathematically, this problem
can be presented as follows *3,

#3 This presentation is also more convenient than (1), (2) for
computer simulation. The difficulty with the application of
higher-order Runge-Kutta methods 1o system (1), (2) is re-
lated to the fact that these methods require knowledge of the
external signal y,,(¢) values at the moments sited inside the
integration intervals. This difficulty does not occur for system
(3) since it is autonomous. ]
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Fig. 6. Block diagram of a physically equivalent system to that
presented in fig. 1. The memory element is replaced by an addi-
tional, identical chaotic system.

drive:  Yup =P(Vap: Xap)
or.np=Q(yap} -rap) *

response: y=P(y, x)+K(ysp—y) .

i=Q(.x). (3)

The conditional Lyapunov exponents A(K) are de-
fined by variational equations of the response system:

: d d
5.1’= ayaptynprxap) =+ arap(ylpsxup)_xayr

: d
8= 8y 5= QU ) + 85 5- QU F) - (4)

Here 8y=)— ¥up, 0x =x —x,, define the deviations of
the response system from the aperiodic orbit, deter-
mined by the drive system. Equations (4) differ from
the variational equations defining the usual Lyapu-
nov exponents of the unperturbed (K=0) system (1)
by the term —K&y. At K=0, the conditional Lya-
punov exponents coincide with the usual Lyapunov
exponents of the unperturbed system. With' the in-
crease of K, this term results in a decrease of A(K)
and the inversion of the sign of the initially positive
Lyapunov exponents. Figure 7 shows the depen-
dence of the maximal conditional Lyapunov expo-
nents on K for the Rossler, Lorenz, and Duffing sys-
tems. The Lyapunov exponents are shown for all
possible cases of a one-variable control and also for
a multi-variable control. To explain these different
cases, let us represent system (1) in a symmetrical
form,
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Fig. 7. Maximal conditional Lyapunov exponents 4 versus weight
K of the perturbation for the (a) Rissler (b) Lorenz, and (c)
Duffing systems. Curves 1, 2, and 3 in diagrams (a) and (b)
correspond to a one-variable control by the x, y, and z variable,
respectively. Curve 4 corresponds to a multi-variable control:
K,=K,=K,=K. In diagram (c) curves 1 and 2 correspond to a
one-variable control by the x and y variables, respectively, and
curve 3 corresponds 1o a multi-variable control: K, =K, = K. The
arrows, marked by corresponding controlled variables, show the
thresholds of synchronization.

E=0(D+K[(&)i=&], i=1,2,.um.  (5)

Here §= (<), &, ..., §n} ={, x} is the complete vector
of the dynamic variables, @={P, @}, and the vector
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&.p represents the aperiodic orbit of the unperturbed
system (5) that we intend to stabilize. The one-vari-
able control by the variable  corresponds to K,=0
for all i#j, and K;=K. The multi-variable control
considered in fig. 7 represents the simplest case of
such a control, when all K; are equal: K,=
K=..=K,=K.

The negative values of the maximal conditional
Lyapunov exponent A(K) <0 define the intervals of
K corresponding to the synchronization. In other
words, these values of K define the operating range
of our method. The boundaries of these intervals,
Kiin and K., correspond to the minimal and max-
imal thresholds of the synchronization, A(Kpi,) =
A(Kpax) =0. As can be seen from the figure, a one-
variable control depends on the choice of the con-
trolled variable. For example, control of the Réssler
system is most efficient by the y variable, since it
leads to the maximal interval of K corresponding to
the synchronization. The control by the z variable of
this system is less efficient, since synchronization is
possible only in a small interval of the parameter K.
Some chaotic systems can have more than one in-
terval of synchronization. An example is the Lorenz
system, which in the case of control by the z variable
has two of such insulated intervals,

In a one-variable control, all characteristics A(K)
have minima at some K=K, which leads to the
maximal rate of synchronization, and, therefore,
provides the optimal control. The existence of an op-
timal value of K can be understood as follows. The
weight K of the perturbation has to be sufficiently
large, in order to compensate the divergence of the
trajectories close to the desired aperiodic orbit. A
rather large K is not efficient since the perturbation
disturbs only one equation of the system, corre-
sponding to the output variable. For large K, the
changes of this variable are very fast, and the re-
maining variables have no time to follow these
changes. Therefore, one can conclude that the min-
imum in A(K) is related to the nonsymmetrical na-
ture of a one-variable control. The calculation of
A(K) in the case of multi-variable control supports
this statement. This control leads t0 monotonically
decreasing characteristics A(K) at any K, for all sys-
tems considered in this paper (fig. 7). Therefore, a
multi-variable control is more efficient. It leads to a
smaller threshold K, and to a faster rate of syn-
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chronization at any fixed K> K., as compared with
those in a one-variable control.

The following question becomes important for an
experimental application of the method: What kind
of chaotic systems can be synchronized with their past
behavior by a one-variable control? Our answer to
this question is based on the assumption that the sta-
bilization of the response system can be achieved only
if the perturbation has a sufficiently large number of
degrees of freedom to suppress the divergence of the
system flow in all expanded directions. More pre-
cisely, we assume that the minimal number of con-
trolled variables has to be equal to the number of
positive Lyapunov exponents of the system. All
models considered up to now support this assump-
tion. They all have only one positive Lyapunov ex-
ponent and they all can be synchronized by a one-
variable control. To check this assumption for a more
complicated system, we have considered the hyper-
chaos equations [25] with two positive Lyapunov
exponents. The dependence of the conditional Lya-
punov exponents on K for different types of control
is shown in fig. 8. It is impossible to synchronize this
system by a one-variable control: the maximal A(K)
is positive at any K for all dynamic variables. How-
ever, it is possible to invert the sign of one out of two
initially positive Lyapunov exponents. This is illus-
trated in the figure for the case of control by the y

=-03

0.6+

09} §
10 10

Fig. 8. Conditional Lyapunov exponents versus K for a hyper-
chaos system [25]: X=—y—z, p=x+0.25y+w, i=3+xz, W=
—0.5z4+0.05w, Curves 1, 2a, 3, and 4 correspond to the maximal
Lyapunov exponents of a one-variable control by the x, ¥, z, and
w variables, respectively. Curve 2b shows the second largest Lya-
punov exponent in the case of control by the y variable. Curve 5
corresponds to a two-variable control by the y and w variables
simultaneously: K, =K, =K.
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variable. Although synchronization is impossible
here, the flow of the dynamic system close to the de-
sired aperiodic orbit diverges now only in one un-
stable direction. One can say that close to this orbit
the control turns hyperchaos into chaos. Applying
the perturbation to two equations of the system, one
can invert the sign of both positive Lyapunov ex-
ponents. This is illustrated in the figure for the case
of a two-variable control by the y and w variables.
Therefore, this model also supports the above
assumption.

4. Restriction of the perturbation

Let us discuss now the transient process. The ini-
tial amplitude of the perturbation depends on the
distance between the states of the response and the
drive systems at the moment of switching on the per-
turbation. In the typical case, this distance is not
short, and the perturbation has a large initial am-
plitude. Large initial values of the perturbation can
be undesired or inaccessible for some experimental
situations. Here, as well as in our previous paper
[17], we consider the restricted perturbation of the
form

F(t)=-F,, KD()<-F,,
=KD(t), —Fy<KD(t)<F,,
=F,, KD(t)2F,. (6)

Here Fy>0 is the saturating value of the perturba-
tion, and D(f)=y,,(t)—p(t). Saturation can be
achieved by introducing some nonlinear element into
the feedback circuit. In proximity to the recorded
signal, y(t) = y.p (1), both perturbations (2) and (6)
are working identically, but they are leading to dif-
ferent transients. Figure 9 illustrates the influence of
the restriction on the system dynamics. Here the per-
turbation is always small including the transient pro-
cess, however, the duration of this process, on av-
erage, is now much longer. The control is not
sufficiently efficient until the state of the response
system does not come close to the state of the drive
system,

For small F,, the average time of the transient { 1>
can be estimated as follows, The probability of the
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Fig. 9. The same as in fig. 2a, but for the case of a restricted per-
turbation. Fy=0.2. The perturbation is switched on at =0.

repetition of the state of the dynamic system with
SOme accuracy € is proportional to the correlation in-
tegral C,,(€) that scales as C,,(€)oce? [26]. Here d
is the correlation dimension of the strange attractor.
The efficient control leading to the synchronization
is possible only if the difference € of the states is of
the order of the amplitude of the perturbation, ecc F,.
Therefore, the average time {1,) of the transient in-
creases with the decrease of F,, by a power law,

(to)xCpr'(€)ax Fg?, Fo® KAyma, . (7)

Here Ay.x is the size of the strange attractor in the
y direction.

For large Fy> KAy .., the perturbation does not
achieve the saturating value Fy, and the system be-
haves in the same manner as if without any restric-
tion. The average length of the transient ¢ 1) now
is proportional to the reciprocal of the maximal con-
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Fig. 10. The average time ¢ 75), needed to achieve synchroniza-
tion of the Lorenz system, versus maximally allowed amplitude
of the perturbation F, for three different values of X: K=4 (1),
10 (2) and 40 (3).
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ditional Lyapunov exponent of the system,
<rﬂ>=|ﬂ(f()|_ls F-D?Kdyma:- (8)

Figure 10 confirms the above relations for the Lorenz
system. The exponent defined from the slope of the
linear dependence log( { ;) ) versus log F;, at small
values of F, is in good agreement with the correla-
tion dimension of the Lorenz system, d=2.05. The
saturating values of {1,) at large F,, agree with the
reciprocal of the Lyapunov exponent defined in fig.
7b.

5. Conclusions

We have shown that the current behavior of a cha-
otic system can be synchronized with its past be-
havior, recorded previously in a memory. This is
achieved by a small self-controlling feedback per-
turbation in the form of the difference between the
current and past output signals. As a result, the sys-
tem behavior becomes absolutely predictable. This
behavior can be changed, within certain limits, ac-
cording to our desire by choosing different intervals
of the past output signal. An experimental applica-
tion of the method does not require any computer
analysis of the system behavior. It can be easily car-
ried out by a purely analogous technique. The op-
erating range of the method can be determined from
the variational equations of the perturbed system.
The method works if the maximal conditional Lya-
punov exponent of the perturbed system is negative.
To stabilize the chaos of higher order, multi-variable
control has to be used. The minimal number of con-
trolled variables has to be equal to the number of
positive Lyapunov exponents of the unperturbed
system.

The large initial values of the perturbation cor-
responding to the transient dynamics can be avoided
by some restriction of the perturbation. However, the
transient process becomes longer in this case. The
average length of the transient increases with the de-
crease of the maximally allowed amplitude of the
perturbation by a power law with the characteristic
exponent being equal to the dimension of the strange
attractor.
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