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Two methods of chaos control with a small time continuous perturbation are proposed. The stabilization of unstable periodic
orbits of a chaotic system is achieved either by combined feedback with the use of a specially designed external oscillator, or by
delayed self-controlling feedback without using of any external force. Both methods do not require an a priori analytical knowl-
edge of the system dynamics and are applicable to experiment. The delayed feedback control does not require any computer
analyses of the system and can be particularly convenient for an experimental application.

1. Introduction

Dynamic chaos is a very interesting nonlinear ef-
fect which has been intensively studied during the
last two decades. The effect is very common; it has
been detected in a large number of dynamic systems
of various physical nature. In practice, however, this
effect is usually undesirable. It restricts the operating
range of many electronic and mechanic devices, Ott,
Grebogi and Yorke [1] (OGY) have suggested an
efficient method of chaos control that can eliminate
chaos. The method is based on the idea of the sta-
bilization of unstable periodic orbits (UPOs)
embedded within a strange attractor., This is achieved
by making a small time-dependent perturbation in
the form of feedback to an accessible system param-
eter. The method turns the presence of chaos into an
advantage. Due to the infinite number of different
UPOs embedded in a strange attractor, a chaotic sys-
tem can be tuned to a large number of distinct pe-
riodic regimes by switching the temporal program-
ming of small parameter perturbation to stabilize
different periodic orbits. Recently the OGY method
has been successfully applied to some experimental
systems [2-4].
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An experimental application of the OGY method
requires, as a rule, a permanent computer analysis of
the state of the system. The changes of the param-
eter, however, are discrete in time since the method
deals with the Poincaré map. This leads to some lim-
itations. The method can stabilize only those peri-
odic orbits whose maximal Lyapunov exponent is
small compared to the reciprocal of the time interval
between parameter changes. Since the corrections of
the parameter are rare and small, the fluctuation
noise leads to occasional bursts of the system into
the region far from the desired periodic orbit, and
these bursts are more frequent for large noise [1].
Therefore, the idea of a time-continuous control
seems attractive in this context.

The response of chaotic systems to continuous pe-
riodic and aperiodic perturbations have been con-
sidered in many investigations [5-9] to suppress
chaos in the system [5,6], to achieve some desired
behaviour [7], to synchronize some subsystems in
a complex chaotic system [8,9]. But none of these
investigations considered the perturbation in the
form of the feedback, The methods developed can-
not be applied to the UPO stabilization. They can
eliminate the chaos in the system, but the resulting
periodic orbits obtained by the methods differ from
the UPOs of the initial system and, therefore, they
require a comparatively large perturbation,

In the following two methods of permanent con-
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trol in the form of feedback are suggested. Both
methods are based on the construction of a special
form of a time-continuous perturbation, which does
not change the form of the desired UPO, but under
certain conditions can stabilize it. A combined feed-
back with a periodic external force of a special form
is used in the first method. The second method does
not require any external force; it is based on a self-
controlling delayed feedback. The block diagrams of
these methods are shown in fig. 1.

2. External force control

Let us consider a dynamic system which can be
simulated by ordinary differential equations. We
imagine that the equations are unknown, but some
scalar variable can be measured as a system output.
We also suppose that the system has an input avail-
able for external force. These assumptions can be met
by the following model,

gf=f’~:,v,x}+:-m, fl—f=Qty,x}. (1)
Here y is the output variable and the vector x de-
scribes the remaining variables of the dynamic sys-
tem which are not available or not of interest for ob-
servation. It is assumed for simplicity that the input
signal F(¢) disturbs only the first equation, corre-
sponding to the output variable. We suppose that the
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Fig. 1. Block diagram of (a) external force control, and (b) de-
layed feedback control. G is a special external periodic oscillator,
D is a delay line.
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considered system without an input signal (F=0)
has a strange attractor.

It has been demonstrated using a standard method
of delay coordinated that a large number of distinct
UPOs on a chaotic attractor can be obtained from
one scalar signal [10-12]. Applying this method to
our system, we can determine from the experimen-
tally measured output signal y(¢) various periodic
signals of different form y=y,(1), y {1+ T)=y:i(1)
corresponding to different UPOs. Here T; is the pe-
riod of the ith UPO. Then we examine these periodic
signals and select the one which we intend to sta-
bilize. To achieve this goal we have to design a spe-
cial external oscillator, which generates the signal
proportional to y;(1). The difference D(r) between
the signal y;(r) and the output signal y(t) is used as
a control signal:

F(ty=K[y(t)—y(1) | =KD(1) . (2)

Here K is an experimentally adjustable weight of the
perturbation. The perturbation has to be introduced
into the system input as a negative feedback (K=0).
An experimental realization of such a feedback pre-
sents no difficulties for many physical systems. The
important feature of perturbation (2) is that it does
not change the solution of eq. (1) corresponding to
the UPO y(r) =»;(7). By selecting the weight K, one
can achieve the stabilization. When this stabilization
is achieved the output signal is very close to y,() and
the perturbation F(¢) becomes extremely small.
Therefore here, as well as in the OGY method, only
a small external force is used to stabilize the UPOs.
We do not intend 1o prove the validity of this method
for the general case, but we have verified it for many
chaotic systems such as the Rossler [13], Lorenz
[14], Rabinovich and Fabrikant [15], Duffing os-
cillator [5,16] systems, and others.

The main results presented here are illustrated for
the Rossler system:

dx (1 [TER

5 = -2z, a =x+0.2y+F(1) ,

dz

E=072+‘{x—5.?). (3)

Here F(r) is the perturbation defined in eq. (2). For
definiteness y is chosen as an output signal. The re-
sults do not depend on the choice of output variable,
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Figure 2a shows the results of stabilization of the pe-
riod-five UPO of the Rossler attractor. The origin of
the curve F corresponds to the time when the per-
turbation is switched on. As it was expected, the per-
turbation becomes small after a transient process and
the system comes into the periodic regime corre-
sponding to an initially unstable orbit. To illustrate
the validity of the method for other chaotic systems
fig. 2b shows the results of stabilization of the pe-
riod-two UPO of the Lorenz system.

The amplitude of perturbation in a post-transient
regime depends on two factors, on the accuracy of
the UPO y,(¢) reconstruction, and on the fluctuation
noise. In an ideal case the perturbation has to be
vanishingly small when the system moves along its
periodic orbit, and the stabilization can be achieved
with a very small signal of the external oscillator. To
investigate the influence of noise, we add terms
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Fig. 2. Dynamics of the output signal y(¢) and perturbation F(¢)
(a) for the Rossler system (eq. (3)), K=0.4, y,(t) corresponds
lo the period-five cycle, and (b) for the Lorentz system: dx/d¢
=10(x—y), dy/di=—xz4+28Bx—yp+F(1), dz/di=xy— %z, the
perturbation F(t) is determined by eq. (2), (1) corresponds to
the period-two cycle. The origin of curve F eorresponds to the
moment of switching on the perturbation, The implement shows
the x—y phase portrait of the system in the post-transient regime.
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€. (1), €,(1), and €. (¢) to the right-hand sides of
eq. (3). The random functions £, &, and &, are in-
dependent of each other, having mean value 0 and
mean-squared value 1. Figure 3 shows the results of
the stabilization of the period-one cycle of the Ros-
sler attractor for two different levels of noise. Since
the control is permanent, the system does not ex-
perience any bursts into the region far from the UPO
even for sufficiently large noise. The increase in noise
leads to the increase of the amplitude of perturba-
tion and to the smearing-out of the periodic orbit.
Note one difference between the OGY and the
above method. The perturbation in the OGY method
is applied only when the state of the system is close
to the fixed point, since it uses a linear approxi-
mation for the deviations from the fixed point. Here
we do not need to wait until the state of the system
comes close to the desired periodic orbit. The per-
turbation can be switched on at any moment. The
Rossler system synchronizes with the external oscil-
lator even when the initial conditions are far from
the periodic orbit. Then the initial perturbation can
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Fig. 3. Results of siabilization of the period-one circle of the
Rossler system at two different levels of noise. K=0.4; (a) e=0.1;
(b) e=0.5.
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be rather large. However, we do not expect that this
will be the case for all dynamic systems. More com-
plicated periodically driven dynamic systems along
with the stabilized UPO can have alternative stable
solutions belonging to different basins of initial con-
ditions. Such multistability can be an undesired fea-
ture for the purpose considered here. Large initial
values of the perturbation can be also undesired for
some experiments. In many cases both these prob-
lems can be solved by restriction of the perturbation.
Introducing some nonlinear element into the feed-
back circuit it is possible to achieve the saturation of
the perturbation F(t) for large values of the devia-
tion D(¢):

F(t)=-F, KD(1)s-F,

=KD(t), =Fy<KD(1)<F,,

Here Fy>0 is the saturating value of the perturba-
tion. Although in proximity to the UPO both per-
turbations (2) and (4) work identically, they lead
to different transient processes. Figure 4 illustrates
the influence of restriction (4) to the system dynam-
ics. The perturbation in this case is always small in-
cluding the transient process. However, the transient
process on average is now much longer. The system
“waits” until the trajectory comes close to the pe-
riodic orbit and only then synchronizes with an ex-
ternal oscillator. As in the OGY method the mean
duration of the transient process increases rapidly
with the decrease of Fy,. The efficiency of restriction
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Fig. 4. Results of stabilization of the period-two circle of the
Rossler system with the restricted perturbation (4). K=0.4,
Fy=0.1.
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(4) to eliminate the multistability will be illustrated
in section 3.

To analyze the local stability of the system we have
calculated the maximal Lyapunov exponent of the
UPOs using the linearization of system (3) with re-
spect to small deviations from the corresponding
UPOs. The dependence of the leading Lyapunov ex-
ponent A of the period-one and period-two orbits on
the parameter K is shown in fig. 5. The negative val-
ues of A(K) determine the interval of K correspond-
ing to the stabilized UPQ. The period-one UPO is
stable in the finite interval K= [ K, Knax ], but the
period-two UPO has an infinite interval K= [K;.,
oo] of stabilization. Here the values K, and K.,
define the threshold of the stabilization:
A(Knin) =A(Kinax ) =0. The Lyapunov exponent A(K)
of both orbits have minima at some value of K=K,
providing an optimal control. Note that for all val-
ues of K> 0 the perturbation decreases the Lyapunov
exponent of the initial system, A(K) <A(0), but not
for all values of K this perturbation is sufficiently ef-
ficient to invert the sign of A. The presence of the
minimal threshold of the stabilization is well under-
stood. The weight K of the perturbation has to be
sufficiently large to compensate the divergence of the
trajectories close to the UPO, A rather large value of
K deteriorates the control. This is related to the fact
that the perturbation disturbs only one variable of
the system. For large K the changes of this variable
are very fast and the remaining variables have no
time to follow these changes. To support this as-
sumption we have considered multivariable control.
A perturbation in the form of eq. (2) with corre-
sponding variables have been added to each equa-
tion of the system (3). As a result the monotonously
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Fig. 5. Dependence of the Lyapunov exponents of the period-one
and period-two UPOs of the Rossler system on the weight K of
the perturbation.



Volume 170, number &

decreasing characteristics A(K) for both orbits have
been obtained.

The experimental application of this method can
be divided into two stages. In the first, preparatory,
stage the output signal should be investigated and the
oscillator generating a periodical signal proportional
to y,(t) should be designed. In the second stage the
control is achieved simply by combining the scheme
shown in fig. 1a. A combined feedback using the dif-
ference between an output signal and the signal of
the external oscillator performs here a self-control-
ling function.

3. Delayed feedback control

The complexity of the experimental realization of
the above method is mainly in the design of a special
periodic oscillator. The second method which we
have considered has no such shortcoming. The idea
of this method consists in substituting the external
signal y;(¢) in eq. (2) for the delayed output signal
»(t—1). In other words, we use a perturbation of the
form

F(t)=K[y(t—1)-y(t) ]=KD(1) . (5)

Here 7 is a delay time. If this time coincides with the
period of the ith UPO t=T; then the perturbation
becomes zero for the solution of system (1) corre-
sponding to this UPO y(¢) =y,(¢). This means that
the perturbation in the form (5) as well as in te form
(2) does not change the solution of system (1) cor-
responding to the /th UPO. Choosing an appropriate
weight K of the feedback one can achieve the sta-
bilization. The results of such a stabilization for the
Rossler system and for the Duffing oscillator are
shown in fig. 6. These results are very similar to those
in the case of an external force control. However, an
experimental realization is simpler in this case. No
external perturbation or computer is needed for this
control. This control is achieved by the use of the
output signal, which is fed in a special form into the
system input. The difference between the delayed
output signal and the output signal itself is used as
a control signal. This feedback performs the function
of self-control. Only a simple delay line is required
for this feedback. To achieve the stabilization of the
desired UPO, two parameters, namely, the time of
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Fig. 6. Results of the stabilization of (a) the period-three cycle
of the Rossler system, K=0.2, 1=17.5, and (b) the period-one
cycle of the nonautonomous Duffing oscillator: dx/dr=y,
dy/dt=x—x*—dy+feos(wt) +F(1), f=2.5, w=1, d4=02,
K=0.4, r=2r/w, in the case of delayed feedback control with the
use of a perturbation in the form of eq. (5).

delay 7 and the weight X of the feedback, should be
adjusted in experiment. The amplitude of the feed-
back signal can be considered as a criterion of UPO
stabilization. When the system moves along its UPO
this amplitude is extremely small. The dependence
of this amplitude on the delay time for the Rossler
system is illustrated in fig. 7a. Excluding the tran-
sient process, the dispersion of the perturbation
{D*(t)) has been calculated for each value of T with
20 different initial conditions, and the correspond-
ing 20 values of this dispersion for each 7 have been
depicted. The resulting figure represents the se-
quence of resonance curves with very deep minima.
These minima are located at the points of delay time
coinciding with the periods of the UPO t=T,. The
phase portraits for these values of delay time are
shown in figs. 7bl, 7b4, 7b8. They correspond to ini-
tially unstable period-one, -two and -three cycles. The
resonance curves are separated by additional min-
ima intervals, corresponding to the steady-state so-
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Fig. 7. (a) Dependence of the dispersion of perturbation on de-
lay time and (b) the x—y phase portraits of the Rossler system in
the post-transient regime for some values of the delay time.
K=0.2.

lution of the Rossler system, i.e. and unstable fixed
point. Therefore, the method can stabilize unstable
fixed points as well as UPO. When the delay time
differs considerably from the period of the UPO, the
output oscillations of the system can be chaotic (figs.
Th3, Tb5-7) of periodic (fig. 7b2). The periodic or-
bits obtained far from resonance (fig. 7b2) differ
considerably from the UPOs. They correspond to new
periodical solutions of the system caused by a large
perturbation. The periods of these orbits differ from
the delay time .

The problem of multistability arises for the Ros-
sler system with delayed perturbation. As can be seen
in fig. 7b, the Rossler system for large values of the
delay time has two stable solutions depending on ini-
tial conditions. The phase portraits 7b5 and 7b6 as
well as 7b7 and 7b8 have been obtained for the same
values of the delay time but with different initial
conditions. As has been mentioned in the previous
section this problem can be avoided by restriction of
the perturbation. The influence of restriction (4) on
the results presented in fig. 7a can be seen from fig.
8. Due to the restriction the upper branch of points
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Fig. 8. The same as in the fig. 7a, but for the case of restricted
delayed perturbation. F=0.1.
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Fig. 9. Dependence of the dispersion of the perturbation on K for
two values of the delay time 1, coinciding with the periods of the
first two periodic orbits: (a) t=35.9, (b) 1=11.75.

in proximity to the period-three resonance disap-
pears. An asymptotical behaviour of the system be-
comes unambiguous for all values of K. The win-
dows of K corresponding to the stabilization of the
fixed point also disappear. This is because the tra-
jectories of an unperturbed Rossler attractor do not
reach the fixed point and to reach it a large pertur-
bation is needed.

The dependences of the dispersion ¢ D*(¢) % and
the Lyapunov exponents X on K for the two first pe-
riodic orbits are shown in figs. 9 and 10. In the case
of delayed feedback each of the two orbits can be sta-
bilized in a finite interval of K. These intervals are



Volume 170, number 6

0.15

/J

-Ul[J —1 |.|| | ||H| —p—— D ] ]
10" 10! 107
K

Fig. 10, Dependence of the Lyapunov exponents of the two first
periodic orbits of the Rossler system on K in the case of delayed
feedback: (1) t=5.9, (2) t=11.75.

much narrower than those obtained with an external
force control. This means that the delayed feedback
control is more sensitive to the fitting of the param-
eters. The external force control is more efficient
since the perturbation always tends to attract the
current trajectory to the desired periodic orbit, de-
termined beforehand. The delayed feedback pertur-
bation tends 1o decrease the distance between the
current trajectory and the delayed trajectory which
in the process of stabilization does not coincide ex-
actly with the UPO.

4. Discussion and conclusions

Note that the perturbation in both forms (2) and
(5) expands the dimension of the originally low-
dimensional system. In the case of an external force
control the perturbation increases the dimension by
one, as any external periodical signal y;(¢) can be
presented by one additional ordinary differential
equation. The delayed feedback perturbation in-
creases the dimension to infinity. Therefore, one can
conclude that the stabilization in both methods is
achieved through additional degrees of freedom in-
troduced in the system with the perturbation. The
perturbation does not change the projections of the
UPOs on an original low-dimensional phase space.
The additional degrees of freedom change only the
Lyapunov exponent of the UPOs, so that they be-
come stable.

This can be illustrated with a simple analytical ex-
ample. An unperturbed (F,=0) one-dimensional
logistic map
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Xps1 =4 (1 =0, )+ F, (6)

has the unstable fixed point x,=] with the eigen-
value A= —2. The perturbation in the form of a de-
lay F,=K(x,_,—x,) does not change the x-coor-
dinate of this fixed point, but increases the dimension
of the map to two. The analysis of this two-dimen-
sional map shows that the absolute values of both
eigenvalues of the fixed point are less than 1 in the
interval of the parameter K=[—1, —0.5]. There-
fore, for these values of K a “one-dimensional” un-
stable fixed point turns into a “two-dimensional”
stable fixed point. A more detailed theory of this sta-
bilization is in progress and will be reporied
elsewhere.

In conclusion, we have shown that the UPO of a
chaotic system can be stabilized by a small time-
continuous perturbation. The permanent control is
noise resistant. The stabilization can be achieved by
the use of a specially designed external periodic os-
cillator, or by the use of delayed self-controlling feed-
back without use of any external force. The multi-
stability of the system under control can be avoided
by restriction of the perturbation. An experimental
realization of the second method is very simple and
this method should be applicable to a wide variety
of systems,
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